Regularizations of the Dirac delta distribution

Bamdad Hosseini, Nilima Nigam and John M. Stockie Simon Fraser University

The 2015 AMMCS-CAIMS congress

June 11, 2015

Introduction

• Solve a PDE

$$\mathcal{L}(u) = \mathcal{S}, \quad \text{in } \Omega.$$

- \mathcal{L} -differential operator, \mathcal{S} source term with δ singularity.
- Approximate problem

$$\mathcal{L}(u_H) = \mathcal{S}_H, \quad \text{in } \Omega$$

so that $\mathcal{S}_H \to \mathcal{S}$ as $H \to 0$.

• In practice we discretize the problems (Finite Differences, Finite Volumes, Spectral, etc)

$$\mathcal{L}(u_h) = \mathcal{S}_h$$

 $\mathcal{L}(u_{H,h}) = \mathcal{S}_{H,h}$

• We want $u_{H,h} \to u$ in some sense as $H, h \to 0$.

Introduction

Questions

- Q1: How do we construct 'good' approximations S_H to S?
- Q2: How does the choice of S_H affect the convergence $u_{H,h} \rightarrow u$?
- Q3: What form of convergence should be used to examine $S_H \rightarrow S$?
- Q4: What form of convergence should be used to examine $u_{H,h} \rightarrow u$?

$$||u - u_{H,h}||_X \le ||u - u_H||_X + ||u_H - u_{H,h}||_X$$

regularization error discretization error

• Discretized errors are well studied^{1,2,3}, so we focus on the regularization error.

¹Anna-Karin Tornberg and Björn Engquist. "Regularization techniques for numerical approximation of PDEs with singularities". In: *Journal of Scientific Computing* 19.1–3 (2003), pp. 527–552.

²Johan Waldén. "On the approximation of singular source terms in differential equations". In: *Numerical Methods for Partial Differential Equations* 15.4 (1999), pp. 503–520.

³Yang Liu and Yoichiro Mori. "Properties of discrete delta functions and local convergence of the immersed boundary method". In: *SIAM Journal on Numerical Analysis* 50.6 (2012), pp. 2986–3015.

Weak-* convergence of $\delta_H \to \delta$

- Assume $S = \delta$, we want a sequence of elements $\delta_H \in \mathcal{H}_0^s(\Omega)$ with a compact support of diameter $\mathcal{O}(H)$.
- Take corresponding elements $\tilde{\delta}_H \in \mathcal{H}^{-s}(\Omega)$

 $\tilde{\delta}_H(\phi) := (\delta_H, \phi)_{L^2(\Omega)}, \qquad d\tilde{elta}_H(\phi) \to \delta(\phi\rangle), \qquad \forall \phi \in C^\infty_c(\Omega).$

• Use Taylor's theorem

$$\begin{aligned} \left| \delta(\phi) - \tilde{\delta}_{H}(\phi) \right| &\leq \left| \phi(0) \left(1 - (\delta_{H}, \mathbf{1}_{\Omega})_{\Omega} \right) + \sum_{1 \leq |\alpha| \leq m} \frac{\partial^{\alpha} \phi(0)}{\alpha!} \left(\delta_{H}, \mathbf{x}^{\alpha} \right)_{\Omega} \right| \\ &+ \left| \sum_{|\beta|=m+1} \left(\delta_{H}, R_{\beta}(\mathbf{y})(\mathbf{x})^{\beta} \right)_{\Omega} \right|. \end{aligned}$$

Moment conditions

$$(\delta_H, \mathbf{1}_{\Omega})_{\Omega} = 1 \quad \text{and} \quad (\delta_H, \mathbf{x}^{\alpha})_{\Omega} = 0 \quad \text{for } 1 \le |\alpha| \le m,$$

$$|\tilde{\delta}_H(\phi) - \delta(\phi)| \le C(\phi, m) H^{m+1}.$$
 (1)

• (Weighted- L^2 space) For $\Omega \subset \mathbb{R}^n$, constant $\beta \in (-\frac{n}{2}, \frac{n}{2})$, measurable $u \in L^2_\beta(\Omega)$ if

$$\|u\|_{L^{2}_{\beta}(\Omega)} := \left(\int_{\Omega} |u(x)|^{2} |x|^{2\beta} dx\right)^{\frac{1}{2}} < \infty.$$
⁽²⁾

• (Weighted Sobolev space)

$$W_{\beta} := \{ u : u|_{\partial\Omega} = 0 \text{ and } \|u\|_{L^{2}_{\beta}(\Omega)} + \|\nabla u\|_{L^{2}_{\beta}(\Omega)} < \infty \}.$$
(3)

$(W_{-\alpha})^*$ convergence of $\delta_H \to \delta$

- Fix $\frac{n}{2} 1 < \alpha < \frac{n}{2}$, then $\delta \in (W_{-\alpha})^*$ (Theorem 4.7 of Agnelli et al.⁴).
- Let h be the mesh size

Proposition

Let δ_H satisfy m moment conditions and assume that $H = \mathcal{O}(h^\beta)$ with $\beta > 0$, then

$$\|\tilde{\delta}_H - \delta\|_{(W_{-\alpha})^*} = \mathcal{O}\left(H^{\frac{1}{\beta}(\alpha + (\beta - 1)(m+1))}\right).$$

⁴Juan Pablo Agnelli, Eduardo M. Garau, and Pedro Morin. "A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces". In: *ESAIM: Mathematical Modelling and Numerical Analysis* 48 (2014), pp. 1557–1581.

Moment conditions

$$(\delta_H, \mathbf{1}_\Omega)_\Omega = 1 \quad \text{and} \quad (\delta_H, \mathbf{x}^\alpha)_\Omega = 0 \quad \text{for } 1 \leq |\alpha| < m.$$

Finite dimensional moment problem

Let \mathcal{H} be an infinite dimensional Hilbert space and fix $m \in \mathbb{N}$. Given linearly independent $\varphi_i \in \mathcal{H}$ and scalars c_i for $i = 0, \ldots, m$, find $q \in \mathcal{H}$ such that

$$(q,\varphi_i)_{\mathcal{H}} = c_i \qquad \text{for } i = 0,\dots,m.$$
 (4)

Let $\{\psi_k\}_{k=0}^{\infty}$ form a Riesz basis in \mathcal{H} so that **span** $\{\varphi_k\}_{k=1}^m =$ **span** $\{\psi_k\}_{k=1}^m$. Then any $\bar{q} = \sum_{j=0}^m \beta_j \psi_j \in \mathcal{H}$ is a solution if β_j s solve

$$\sum_{i=0}^{m} (\varphi_i, \psi_j)_{\mathcal{H}} \beta_j = c_i \qquad \text{for } i = 0, \dots, m.$$
(5)

Furthermore, any $\tilde{q} = \bar{q} + \beta_k \psi_k$ is a solution if ψ_k is orthogonal to span $\{\psi_i\}_{i=0}^m$.

Constructing δ_H

- Choose number of moments $m \in \mathbb{N}$.
- Pick a domain $\Omega_H \subset \Omega$ with diameter H containing the origin.
- Pick a convenient orthonormal basis $\{\psi_k\}_k \in L^2(\Omega_H)$ (Polynomials, Trig functions).
- Set $\delta_H = \sum_{j=0}^m \beta_j \psi_j$.
- Solve the linear system

$$\sum \beta_k \left(\psi_k, \mathbf{1}_{\Omega} \right)_{\Omega} = 1 \quad \text{and} \quad \sum \beta_k \left(\psi_k, \mathbf{x}^{\alpha} \right)_{\Omega} = 0, \quad \text{for } 1 \le |\alpha| < m.$$
(6)

• We are free to add more conditions!

Constructing δ_H

Example: Radial regularizations in 2D

Choose $\delta_H(\mathbf{x}) = H^{-2}\eta_{m,p}(\mathbf{x}/H)$ such that $\eta_{m,p}$ is radially symmetric and supported on B(0,1). Rewrite moment problem in radial coordinates and choose Legendre polynomials as the basis.

$$\eta_{1,1}(r) = \frac{6}{\pi}(3-4r), \quad \eta_{2,2} = \frac{12}{\pi}(15r^2 - 20r + 6).$$

Example: Tensor product regularizations in 2D

Choose $\delta_H = (H^{-1}\eta_{m,p}(x/H)) \otimes (H^{-1}\eta_{m,p}(y/H))$ for $\eta_{m,p}(x)$ supported on [-1,1]. Write moment conditions in 1D with Legendre polynomials as the basis.

$$\eta_{1,0}(x) = \frac{1}{2}, \quad \eta_{2,2}(x) = \frac{9}{2}18x + 15x^2.$$

Constructing δ_H

Symbol	Dim	Moment	Expression	Reference
$\eta_{1,0}$	1D	1	$\frac{1}{2}$	
$\eta_{1,1}$	1D	1	1-r	[1,2,3]
$\eta_{2,2}$	1D	2	$\frac{9}{2} - 18r + 15r^2$	
$\eta_{2,3}$	1D	2	$-30r^3 + 60r^2 - 36r + 6$	
$\eta_{2,5}$	1D	2	$168r^5 - \frac{945}{2}r^4 + 450r^3 - 150r^2 + \frac{9}{2}$	
$\eta_{1,cos}$	1D	1	$\frac{1}{2}(1 - \cos(\pi r))$	[1,2,3,4]
$\eta_{1,1}$	2D	1	$\frac{6}{\pi}(3-4r)$	
$\eta_{1,2}$	2D	1	$\frac{12}{\pi}(5r^2-8r+3)$	
$\eta_{2,2}$	2D	2	$\frac{12}{\pi}(15r^2-20r+6)$	
$\eta_{2,3}$	2D	2	$\frac{-60}{\pi}(7r^3 - 15r^2 + 10r - 2)$	
$\eta_{2,5}$	2D	2	$\frac{84}{\pi}(24r^5 - 70r^4 + 70r^3 - 25r^2 + 1)$	

¹Anna-Karin Tornberg and Björn Engquist. "Numerical approximations of singular source terms in differential equations". In: *Journal of Computational Physics* 200.2 (2004), pp. 462–488

²Richard P. Beyer and Randall J. LeVeque. "Analysis of a one-dimensional model for the immersed boundary method". In: *SIAM Journal on Numerical Analysis* 29.2 (1992), pp. 332–364

³Johan Waldén. "On the approximation of singular source terms in differential equations". In: *Numerical Methods for Partial Differential Equations* 15.4 (1999), pp. 503–520

⁴Anna-Karin Tornberg. "Multi-dimensional quadrature of singular and discontinuous functions". In: *BIT* 42.3 (2002), pp. 644–6695

Constructing δ_H : Examples in 1D

Constructing δ_H : Examples in 2D

Convergence of $u_H \rightarrow u$: Elliptic PDEs

$$Lu = \delta$$
, $Lu_H = \tilde{\delta}_H$ for $x \in \Omega$, and $u = u_H = 0$ on $\partial \Omega$.

L-constant coefficient elliptic operator, δ_H-m-moment regularization.
 Pointwise convergence away from the support

$$|u(x) - u_H(x)| \le C_m H^{m+1}, \quad \text{for} \quad x \in \Omega \setminus \text{supp } \tilde{\delta}_H.$$
 (7)

• Helmholtz equation on a disk.

Convergence of $u_H \rightarrow u$: Elliptic PDEs

- L- constant coefficient second order elliptic operator.
- Weighted Sobolev norm (Section 2.1 of Agnelli et al.⁴)

$$\|u - u_H\|_{W_{\alpha}} \le C_* \left\| \delta - \tilde{\delta}_H \right\|_{(W_{-\alpha})^*} \le \tilde{C}_* H^{\frac{1}{\beta}(\alpha + (\beta - 1)(m+1))}.$$
(8)

- Recall $H = \mathcal{O}(h^{\beta})$.
- In the limit as $\beta \rightarrow 1$, convergence is independent of m.
- Helmholtz equation on a disk.

⁴Juan Pablo Agnelli, Eduardo M. Garau, and Pedro Morin. "A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces". In: *ESAIM: Mathematical Modelling and Numerical Analysis* 48 (2014), pp. 1557–1581

First order wave equation in 1D

$$\begin{cases} u_t + u_x = 0 & \text{in } \mathbb{T}(0, 2\pi) \times (0, T), \\ u(x, 0) = \delta_H(x) & \text{on } \mathbb{T}(0, 2\pi) \times \{t = 0\}. \end{cases}$$
(9)

- Analytic solution $u(x, y) = \delta_H(x t)$.
- Pointwise error at $t = 36\pi$ (13 periods).

- Larger error with higher moments.
- Dissipative error.

Second order wave equation in 2D

$$\begin{cases} u_{tt} = u_{xx}, & \text{in } (-1.1)^2 \times (0, 0.7], \\ u(x, 0) = \delta_H, & u_x(x, 0) = u(x, t)|_{\partial[-1, 1]} = 0. \end{cases}$$
(10)

- Similar to free space solution for short time.
- Should be radially symmetric.

Korteweg-de Vries (KdV)

 $u_t + 6uu_x + u_{xxx} = 0$ in $\mathbb{T}([-8\pi, 8\pi]) \times (0, 0.05]$ and $u(x, 0) = \delta_H$. (11)

• Analytic solution

modes

Questions

- Q1: How do we construct 'good' approximations S_H to S? A: Moment problem.
- Q2: What form of convergence should be used to examine $S_H \rightarrow S$? A: Weak-* topology, Weighted Sobolev norm.
- Q3: How does the choice of S_H affect the convergence $u_{H,h} \rightarrow u$?
 - A: Depends on the PDE operator and the choice of the norm.
- Q4: What form of convergence should be used to examine $u_{H,h} \rightarrow u$? A: Pointwise away from a compact set, Weighted Sobolev norm.
 - A flexible framework to construct $\tilde{\delta}_H$.
 - Compare existing regularizations in the literature (Tensor product vs Radial).

Thank you!

Bamdad Hosseini, Nilima Nigam, and John M. Stockie. "On regularizations of the Dirac delta distribution". In: (2014). URL: http://arxiv.org/abs/1412.4139

References

Agnelli, Juan Pablo, Eduardo M. Garau, and Pedro Morin. "A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces". In: *ESAIM: Mathematical Modelling and Numerical Analysis* 48 (2014), pp. 1557–1581.

Beyer, Richard P. and Randall J. LeVeque. "Analysis of a one-dimensional model for the immersed boundary method". In: *SIAM Journal on Numerical Analysis* 29.2 (1992), pp. 332–364.

Hosseini, Bamdad, Nilima Nigam, and John M. Stockie. "On regularizations of the Dirac delta distribution". In: (2014). URL: http://arxiv.org/abs/1412.4139.

Liu, Yang and Yoichiro Mori. "Properties of discrete delta functions and local convergence of the immersed boundary method". In: *SIAM Journal on Numerical Analysis* 50.6 (2012), pp. 2986–3015.

Tornberg, Anna-Karin. "Multi-dimensional quadrature of singular and discontinuous functions". In: *BIT* 42.3 (2002), pp. 644–6695.

Tornberg, Anna-Karin and Björn Engquist. "Numerical approximations of singular source terms in differential equations". In: *Journal of Computational Physics* 200.2 (2004), pp. 462–488.

— ."Regularization techniques for numerical approximation of PDEs with singularities".
 In: *Journal of Scientific Computing* 19.1–3 (2003), pp. 527–552.
 Waldén, Johan. "On the approximation of singular source terms in differential equations".
 In: *Numerical Methods for Partial Differential Equations* 15.4 (1999), pp. 503–520.