Estimating fugitive emissions of airborne particulate matter using a Gaussian plume model

<u>Bamdad Hosseini</u> and John M. Stockie Simon Fraser University

The 2015 AMMCS-CAIMS congress

June 10, 2015

Fugitive emissions

- Companies can place sensors on well-known sources.
- Unknown sources: piles of material, moving trucks, vents and windows, etc.
- Fugitive emissions are difficult to measure directly.
- Indirect measurements \rightarrow source inversion

Fugitive emissions

- Teck Resources Ltd. at Trail, British Columbia.
- Integrated lead-zinc smelter.
- Different pollutants: zinc, lead, arsenic, SOx etc.
- During August 20 to September 19,2014.
- Multiple sensors: Dust-Fall jars, Xact, PM10 and TSP.
- Horizontal wind velocity and direction at a single post.

The forward problem

- Simplifying assumptions:
 - Ground is flat.
 - Horizontal wind velocity changes with altitude.
 - One type of contaminant with no chemical reactions.
 - Fixed deposition and settling velocities.
 - Only dry deposition (Ignore washout due to rain).
 - All sources in an area are approximated by a single point source.

The forward problem

• Gaussian plume (Ermak's¹) solution for a point source at (0,0, *H*), *x*-axis pointing in the direction of wind:

$$\begin{aligned} \varepsilon(\mathbf{x}) &= \frac{q}{2\pi\sigma_y\sigma_z |u|} \exp\left(-\frac{y^2}{2\sigma_y^2} - \frac{W_{\text{set}}z}{2K_z} - \frac{W_{\text{set}}^2\sigma_z^2}{8K_z^2}\right) \\ &\times \left[\exp\left(-\frac{H^2}{2\sigma_z^2}\right) + \exp\left(-\frac{(H+2z)^2}{2\sigma_z^2}\right) - \exp\left(\frac{W_o(H+2z)}{K_z} + \frac{W_o^2\sigma_z^2}{2K_z^2}\right) \exp\left(\frac{W_o\sigma_z}{\sqrt{2K_z}} + \frac{H+2z}{\sqrt{2\sigma_z^2}}\right)\right] \end{aligned}$$

- c concentration
 q rate of emissions
- u wind velocity
- W_{set} settling velocity

W_{dep} deposition velocity

•
$$W_o = W_{dep} - \frac{1}{2}W_{set}$$

- K_z vertical eddy diffusion coefficient
- σ_y, σ_z horizontal and vertical plume standard deviation

- Linear in the emission rates!
- Commonly used in industry standard software.

¹Donald L. Ermak. "An analytical model for air pollutant transport and deposition from a point source". In: *Atmospheric Environment* 11.3 (1977), pp. 231–237.

The forward problem

- Wind data measured at times $\{\tau_1, \tau_2, \cdots, \tau_{N_w}\}$.
- Piece-wise constant wind data for $t \in (\tau_i, \tau_{i+1}]$.
- Piece-wise constant Ermak's solution for each sensor.
- $q_i(t)$, rate of emission of source $i \in \{1, 2, \cdots, N_q\}$.
- Sensor j is actively measuring on intervals $\{I_{j,1}, I_{j,2}, \cdots, I_{j,N_j}\}$, $I_{j,k} := \{t \in (a_{j,k}, b_{j,k}]\}.$
- Model sensor measurements as $d_{j,k} = B_j \int_{I_{j,k}} \sum_{i=1}^{N_q} c_{i,j}(t) dt$.
- Discretize on a grid $\{t_1, t_2, \cdots, t_{N_T}\}$, over the interval (0, T].
- Concatenate and regroup to get

$$\mathbf{d} = \mathbf{F}\mathbf{q}$$

• Additive, uncorrelated Gaussian noise

$$\mathbf{d} = \mathbf{F}\mathbf{q} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(0, \boldsymbol{\Sigma}).$$

• Bayes' rule²

$$\pi_{\text{post}}(\mathbf{q}|\mathbf{d}) \propto \underbrace{\exp\left(-\frac{1}{2} \left\|\boldsymbol{\Sigma}^{-1/2}(\mathbf{F}\mathbf{q}-\mathbf{d})\right\|_{2}^{2}\right)}_{\text{likelihood}} \pi_{\text{prior}}(\mathbf{q})$$

 Three choices for the prior: constant+positivity, smoothness and smoothness+positivity

²Jari P. Kaipio and Erkki Somersalo. *Statistical and computational inverse problems*. Springer, 2005.

Constant+positivity:

- Take $\mathbf{p}=(p_1,\cdots,p_{N_q})$ and $\mathbf{q}=\mathbf{B}\mathbf{p}$
- Reduces to N_q dimensional problem.
- Maximum likelihood estimator (MLE) will suffice

$$\mathbf{q}_{\mathsf{c}} = \mathbf{B}\mathbf{p}_{\mathsf{mle}}, \quad \mathbf{p}_{\mathsf{mle}} := \operatorname*{arg\,min}_{\mathbf{p}\succeq 0} \left\|\boldsymbol{\Sigma}^{-1/2}(\mathbf{F}\mathbf{B}\mathbf{p} - \mathbf{d})\right\|_2^2.$$

Smoothness:

- Use constant emissions as prior mean.
- Gaussian smoothness prior, $\pi_{\text{prior}}(\mathbf{q}) = N(\mathbf{q}_{c}, \mathbf{C}).$
- $\mathbf{C} = \mathbf{I}_{N_q} \otimes \mathbf{L}^{-2}$, where \mathbf{I}_{N_q} is the $N_q \times N_q$ identity matrix.
- L is a discretization of $\alpha(I \gamma \partial_{tt})$ with homogeneous Neumann bc.

• Linear forward map $\rightarrow \pi_{\mathsf{post}} = N(\mathbf{q}_{\mathsf{s}}, \mathbf{C}_{\mathsf{s}})$,

$$\begin{split} \mathbf{q}_{\mathsf{s}} &:= \mathbf{q}_{\mathsf{c}} + \mathbf{C} \mathbf{F}^* (\boldsymbol{\Sigma} + \mathbf{F} \mathbf{C} \mathbf{F}^*)^{-1} (\mathbf{d} - \mathbf{F} \mathbf{q}_{\mathsf{c}}), \\ \mathbf{C}_{\mathsf{s}} &:= \mathbf{C} - \mathbf{C} \mathbf{F}^* (\boldsymbol{\Sigma} + \mathbf{F} \mathbf{C} \mathbf{F}^*)^{-1} \mathbf{F} \mathbf{C}. \end{split}$$

Smoothness+positivity

- Introduce an auxiliary variable: $\mathbf{q} = \max{\{\mathbf{v}, \mathbf{0}\}}$.
- ${\ensuremath{\, \bullet }}$ Pose nonlinear problem for ${\ensuremath{\, v}}$

$$\pi(\mathbf{v}|\mathbf{d}) \propto \exp\left(-\frac{1}{2} \left\|\boldsymbol{\Sigma}^{-1/2}(\mathbf{F}(\max\{\mathbf{v},\mathbf{0}\}) - \mathbf{d})\right\|_2^2\right) \ \pi_{\text{prior}}(\mathbf{v}).$$

 ${\ensuremath{\,\circ\,}}$ Use smoothness prior on ${\ensuremath{\,v\,}}$

$$\pi_{\rm prior}({\bf v})=N({\bf q}_{\rm c},{\bf C})$$

• Use Markov Chain Monte Carlo to compute \mathbf{v}_{CM} (posterior mean), $\mathbf{q}_{\mathsf{sp}} := \max\{\mathbf{v}_{\mathsf{CM}}, \mathbf{0}\}$, standard deviations, etc.

Application: setup

- During August 20 to September 19, 2014.
- PbO particulates.

Density $[kgm^{-3}]$	Diameter $[m]$	Deposition vel. $[ms^{-1}]$	Settling vel. $[ms^{-1}]$
ρ	d	W_{dep}	W_{set}
9530	5×10^{-6}	0.005	0.0026

• Wind data at 10 minute intervals.

Application: setup

Туре	Dust-fall jar	TSP	PM10	Xact
Sched.	entire month	every two days	every week	every hour
SNR	11	100	100	100
# meas.	1	16	6	761

Application: synthetic data set

Application: actual data

	[tn/yr]
q_c	54.0
q_s	57.5 ± 5
q_{sp}	63.0 ± 5
Prev. study	25 - 40
Indep.	15 - 50

Application: impact assessment

Application: uncertainty propagation

- Approximate posterior by $N(\mathbf{q}_{sp}, \tilde{\mathbf{C}}_{sp})$.
- Forward problem is linear

$$\pi_{\mathsf{deposition}} = N(\tilde{\mathbf{F}}\mathbf{q}_{\mathsf{sp}}, \tilde{\mathbf{F}}\tilde{\mathbf{C}}_{\mathsf{sp}}\tilde{\mathbf{F}}^*).$$

Closing remarks

- Estimating fugitive emissions is difficult.
- We solve three inverse problems.
 - Constant and positive emissions.
 - Smoothness.
 - Smoothness and positivitiy.
- Insufficient data.
- Room for improvement:
 - Better prior.
 - Faster algorithms.
 - Improve uncertainty propagation.
 - Include wind uncertainty.
 - Design of experiments.

Thank you!

Ermak, Donald L. "An analytical model for air pollutant transport and deposition from a point source". In: *Atmospheric Environment* 11.3 (1977), pp. 231–237. Kaipio, Jari P. and Erkki Somersalo. *Statistical and computational inverse problems.* Springer, 2005.