Lecture 11 - Conservative forces

What's important:

conservation of energy; power

Demonstrations: none

Conservative Forces

The concept of potential energy that we introduced in the last lecture has an aspect of reversibility associated with it:

- we do work to slide a block up an inclined plane (increase U)
- gravity does work as a block slides down an inclined plane (decrease U).

What about a force like friction? We can slide a book across a table against a frictional force

We do work on the book, $W \neq 0$, but $v_i = v_f = 0$ and there is no change in $K: \Delta K = 0$.

Further, there is no change in U: after we have stopped pushing the book, it does not move back into its original position (*i.e.* the potential energy of the book hasn't changed, so the book can't reduce its potential energy by moving to its original position)! So, friction does not have a potential energy U associated with it.

We say that gravity is a **conservative force**: it has a potential energy which depends on position. Friction is a **non-conservative (or dissipative) force** with no potential energy.

Are there other differences between conservative and non-conservative forces?

So, in a conservative force, the work depends only on end-points of the path; in a nonconservative force, the work depends on the path. Finally, we can generalize the conservation of energy relation to read:

$$W_{\text{non-cons}} = \Delta E = \Delta (K + U)$$

all the conservative work disappears into potential energy

Example A block of mass *m* has an initial speed v_i . It slides on a table, subject to friction μ_k . How far does the block move before stopping? Do two calculations: forces and energy.

frictional force on the object is constant, producing an acceleration

 $ma = -\mu mg$ or $a = -\mu g$. From kinematics for objects with constant acceleration,

 $x = (v_{\rm f}^2 - v_{\rm i}^2) / 2a \quad \rightarrow \quad x = -v_{\rm i}^2 / 2a$

becomes

 $x = -v_i^2 / 2(-\mu g) = v_i^2 / 2\mu g$

energy approach

change in kinetic energy = $DK = mv_i^2/2 - mv_i^2/2 = -mv_i^2/2$.

non-conservative work = $-f \cdot x = -\mu mg x$.

then, from $W_{\text{non-con}} = \Delta(K + U) = \Delta K$

 $-\mu mg x = -mv_i^2/2$ or $x = v_i^2/2\mu g$

Note that the heat from friction is absorbed by both the block and the table; it has already been taken into account in both calculations.

Example block starting from rest and sliding down a plane with or without friction. Let the height difference during the motion be h, and the distance along the plane L.

change in kinetic energy = $\Delta K = mv_{f}^{2}/2$ positive change in potential energy = $\Delta U = -mgh$ negative no friction $W_{non-con} = 0$ $\Delta(K + U) = 0$ $\Delta K = -\Delta U$ $mv_{f}^{2}/2 = -(-mgh)$ or $v_{f}^{2}/2 = gh$. with friction $W_{non-con} = -\mu NL$ $\Delta(K + U) = -\mu NL$ $\Delta K = -\Delta U - \mu NL$ $mv_{f}^{2}/2 = -(-mgh) - \mu NL$ or $v_{f}^{2}/2 = gh - \mu NL/m$.

In other words, v_f is less <u>with</u> friction than without: the object slides more slowly in the presence of friction, as we expect.

In both of these examples, friction has done *negative* work to *lower* the total mechanical energy **E** of the system.

Potential and Force

We said that the work done by the system lowers its potential

 $W_{\rm by \ the \ system} = -\Delta U$

Suppose now we let Δx become sufficiently small that the force is constant over the *x* range. Then

 $W = F \Delta x$

whence

 $F \Delta x = -\Delta U$

or

 $F = -\Delta U / \Delta x$ as $\Delta x \to 0$

That is, force is the (negative) rate of change of potential energy with distance.

In three dimensions, this equation applies component by component:

$$F_x = -\Delta U / \Delta x$$
 $F_y = -\Delta U / \Delta y$ $F_z = -\Delta U / \Delta z$

Clearly, this only applies for conservative forces.

Springs provide a simple example of a force which depends on distance: $|\mathbf{F}| = kx$. We find the work required to stretch a spring by taking the area under the force-distance curve:

As usual, the area of the triangle under the curve is just $[area] = 1/2 \ [base] \cdot [height] = 1/2 \ x \cdot kx = kx^2/2.$

In other words, the work required to stretch the spring is $kx^2/2$, and this increases the potential energy of the spring by

 $U = kx^2/2.$

We can work from *U* to *F* by means of $F = -\Delta U / \Delta x$ (need the derivative of a polynomial to do this).

Power

Power is the rate of change of energy $P = \Delta E / \Delta t$ as $\Delta t \rightarrow 0$.

In MKSA, power has units of Joules / seconds = watts (1 hp = 1 horsepower = 746 watts). Your electric power utility often quotes energy in terms of *power x time*:

1 kW - hr = $1000 \cdot 3600$ watt-seconds = 3.6×10^6 J.

If we are considering the power delivered by a system doing work, then

 $P = W / \Delta t = (F \Delta x) / \Delta t = F (\Delta x / \Delta t)$

But

$$\Delta x \, / \, \Delta t = \, v,$$

so

P = Fv.

In three dimensions:

$$P = \mathbf{F} \cdot \mathbf{v}.$$

Example: The food intake in a typical diet releases 2500 Calories per day. What is the power generated in watts?

Energy units: 1 Calorie = 1000 calories = 1 kcal (note C vs. c). 1 calorie = 4.186 JHence: 2500 Calories = 2.5×10^6 calories = $2.5 \times 10^6 \times 4.186 \text{ J}$ or energy produced = $1.05 \times 10^7 \text{ J}$ This energy is produced in 1 day = $24 \times 60 \times 60 = 8.64 \times 10^4$ seconds. Hence, power = energy / time = 1.05×10^7 / 8.64×10^4 = 121 J/sThe energy released is somewhat more than a 100 watt light bulb.

Example: Calculate the quadratic drag force experienced by a car, and the power required to overcome this force, for the following conditions:

(a) 90 km/hr

(b) 120 km/hr.

Take the car to have a cross sectional area of 2 m^2 , and a drag coefficient of 0.4. Quote your answer in hp.

Ans. (a) 10.8 hp, (b) 25.6 hp.