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Lecture 12 - Centre of mass and collisions

What’s important:

• centre of mass motion
• conservation of momentum
• collisions in one dimension
Demonstrations:

• collisions on an air track
Text: Walker, Secs. 9.4, 9.5, 9.6, 9.7
Problems:

Centre of mass

Most of the physical objects that we deal with have some spatial extension - they are
not point-like objects.  But when we discuss the motion of a ball, for example, we talk
about the "position of the ball" as if it were a point.  It seems natural enough to do so,
but why does it work?

Consider the motion of a sailboat, complete with sails and flags.  When we talk about

the position of the boat, we tend to ignore the sails and concentrate on the hull.
Unquestionably, the sail provides the force to propel the boat, but the motion of the
boat is dominated by the hull.  In other words, we emphasize the (dynamic) importance
of the different elements of an object according to their mass.

We can define a weighted average of a collection of objects (or of the components
of an object) by  the vector Rcm

Rcm = Mtot
-1 Σi=1

N miri

where Mtot is the total mass

Mtot = Σi=1
N mi

As you can verify by inspection, the units of the masses on the right-hand side of this
equation cancel, leaving Rcm with units of length.
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Example

Consider two unequal mass objects, m1 and m2, at positions +r and -r:

m1m2

- r  r
→ →

Rcm   =
1

m1  +  m2
(m1 r  -  m2 r) =

m1  -  m2

m1  +  m2
 r
→→ → →

Two special cases:
• Suppose m1 = m2, then Rcm = 0 (i.e., the cm sits at the coordinate origin).
• Suppose m1 >> m2, then m1 + m2 ~ m1 and Rcm ~ (m1 / m1) r = r, as expected.

Motion of the cm

Now, ∆Rcm/∆t is the velocity of the centre-of-mass, vcm; that is, vcm is the slope of the
Rcm vs. time graph.  What is vcm in terms of the individual velocities?  It takes some
mathematics (which you may want to skip)

∆Rcm/∆t = ∆(Mtot
-1 Σi=1

N miri)/∆t = Mtot
-1 ∆(Σi=1

N miri)/∆t = Mtot
-1 Σi=1

N mi (∆ri/∆t)

to show that

vcm = Mtot
-1 Σi=1

N mivi

In other words, the cm velocity is the weighted sum of the individual velocities.  The
same applies for the cm acceleration:

a cm = ∆vcm/∆t = Mtot
-1 Σi=1

N mia i

What determines the motion of the centre of mass?  Suppose that individual particles
in the system are subject to N forces  (one for each particle):

Fnet = Σi=1
N F i.

Then by Newton’s Second Law,

Fnet = Σi=1
N F i = Σi=1

N mia i = Mtot {Mtot
-1 Σi=1

N mia i} = Mtot a cm

This expression says that a cm obeys a dynamical equation of the same form as
Newton’s second law.  We can also substitute a cm = ∆vcm/∆t  to obtain
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Fnet = Mtot ∆vcm/∆t = ∆{Mtotvcm}/∆t = ∆P tot/∆t.

Summary
Rcm = Mtot

-1 Σi=1
N miri

vcm = ∆Rcm / ∆t vcm = Mtot
-1 Σi=1

N mivi as ∆t --> 0

a cm = ∆vcm / ∆t a cm = Mtot
-1 Σi=1

N mia i as ∆t --> 0
and

Fnet = Mtot a cm= ∆P tot / ∆t.

Thus, Rcm, vcm and a cm behave just like any kinematic set r, v, a , except that the
dynamics is governed by Fnet.  This is why we don't need to worry about the dynamics
of atoms when we describe the motion of a car.  In our study of dynamics, gravity acts
through the centre of mass of an object.

Conservation of Momentum

In the previous lecture, we dealt with a fundamental conservation law of Nature:
conservation of energy.  There is another equally important conservation law -
conservation of momentum.  This law says that if the net external force on a system of
N particles vanishes, then the total momentum P tot

P tot = Σi=1
N p i

does not change with time
∆P tot / ∆t = 0.

Note that conservation of momentum is a vector equation and applies component by
component to the momentum vector p.  We now wish to apply the conservation of
energy and momentum to the interaction of objects.

Collisions in One Dimension

Consider two objects whose initial velocities and masses are known:

    

m1 m2

v1 v2

After the objects interact (or in this case, collide), we have
m1 m2

v1’ v2’

Can we determine v1' and v2'?  We know that momentum is conserved, so
m1v1 m2v2+ = m1v1’ m2v2’+

take sign into account

If the collision involves no dissipative forces, then we also have conservation of kinetic
energy
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1
2

m1v1 + 1
2 m2v2 =

1
2 m1(v1’) + m2(v2’)

1
2

2 2 2 2

So, in this situation we have two equations and two unknowns, and we can solve for
both v1' and v2' .

Consider a slightly different situation:
m1 m2

vi

m1 m2m1 and 
m2 stick

vf

We can solve this by conservation of momentum alone:
m1vi + 0 = (m1 + m2)vf or vf = [m1/(m1 + m2)] vi.

But conservation of kinetic energy also gives an equation relating vi and vf.  Is this
equation consistent with the results from conservation of momentum?  To answer this
question, we evaluate the kinetic energy before and after the collision as determined
by the conservation of momentum equation:

Ki =
1
2

m1vi
2

Kf =
1
2

(m1  +  m2) vf
2

=
1
2

(m1  +  m2)
m1  +  m2

m1( )
2

vi
2

=
1
2 m1  +  m2

m1( ) m1vi
2

= m1  +  m2

m1
Ki

∴  Kf  <  K i  and kinetic energy is not conserved.  The difference in kinetic energy
between the initial and final states has gone into heat or sound or whatever.

Rules:
• first apply conservation of momentum (vector, results in 1  to  3  equations).
• then evaluate the kinetic energies (1 equation)

We say the collision is elastic if kinetic energy is conserved.  If kinetic energy is not
conserved, the collision is inelastic and Kf < Ki.  Thus, kinetic energy may not provide
a constraint on the values of the momenta after the collision.  Of course, even if kinetic
energy is not conserved, the total energy, including heat etc., must be conserved.


