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Lecture 12 - Centre of mass and collisions

What's important:
centre of mass motion
conservation of momentum

collisions in one dimension
Demonstrations:

collisions on an air track
Text: Walker, Secs. 9.4, 9.5, 9.6, 9.7
Problems:

Centre of mass

Most of the physical objects that we deal with have some spatial extension - they are
not point-like objects. But when we discuss the motion of a ball, for example, we talk
about the "position of the ball" as if it were a point. It seems natural enough to do so,

but why does it work?

Consider the motion of a sailboat, complete with sails and flags. When we talk about

the position of the boat, we tend to ignore the sails and concentrate on the hull.
Unquestionably, the sail provides the force to propel the boat, but the motion of the
boat is dominated by the hull. In other words, we emphasize the (dynamic) importance
of the different elements of an object according to their mass.

We can define a weighted average of a collection of objects (or of the components
of an object) by the vector R,

— -1 N
Rcm _Mtot Szl miri

where M. . is the total mass

tot

— N
Mtot - S|:1 mi

As you can verify by inspection, the units of the masses on the right-hand side of this
equation cancel, leaving R_,, with units of length.
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Example

Consider two unequal mass objects, m, and m,, at positions +r and -r:

® ®
-T r
-
- o—
my mq
® 1 ® my - m ®
R = - - = — =
e m; + mp (ma mZ% mp; + mp '

Two special cases:
Suppose m, =m,, thenR_,, = 0 (i.e., the cm sits at the coordinate origin).
Suppose m;, >>m,, thenm, +m,~m, and R, ~ (m, /m,) r =r, as expected.

Motion of the cm

Now, DR, /Dtis the velocity of the centre-of-mass, v ,; thatis, v, is the slope of the
R.., vs. time graph. What is v, in terms of the individual velocities? It takes some
mathematics (which you may want to skip)

DR.,/Dt = D(M,,* SI:lN myr)/Dt = M, D(SI:lN myr)/Dt = M, * S|:1N m; (Dr,/Dt)
to show that

— -1 N
ch _Mtot SI:]. my\V;

In other words, the cm velocity is the weighted sum of the individual velocities. The
same applies for the cm acceleration:

acm = Dch/Dt = 'vltot_1 S|=1N miai

What determines the motion of the centre of mass? Suppose that individual particles
in the system are subject to N forces (one for each particle):

=S_"F.

net (

F
Then by Newton’s Second Law,

Fret = S::LN Fi = S.:lN ma; = M, {Mto{l S.:lN ma;} =M a.,

net (

This expression says that a_, obeys a dynamical equation of the same form as
Newton’s second law. We can also substitute a, = Dv /Dt to obtain
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Fnet = MIOt DVCm/D.t = D{MtOtVCm}/Dt = DP tOt/Dt'
Summary
Rcm = I\/Itot-l S|=1N miri
V., =DR,, /Dt Ve =Mt SN my, asDt-->0
a,, =Dv,, /Dt a,, =M,*S. "ma, asDt-->0
and
Fnet = MIOt acm: DP tot / Dt
Thus, R, v, and a_, behave just like any kinematic set r, v, a, except that the

dynamics is governed by F .. This is why we don't need to worry about the dynamics
of atoms when we describe the motion of a car. In our study of dynamics, gravity acts
through the centre of mass of an object.

Conservation of Momentum

In the previous lecture, we dealt with a fundamental conservation law of Nature:
conservation of energy. There is another equally important conservation law -
conservation of momentum. This law says that if the net external force on a system of
N particles vanishes, then the total momentum P

Ptot = SI:].N pi

tot

does not change with time
DP. . /Dt=0.

tot

Note that conservation of momentum is a vector equation and applies component by
component to the momentum vector p. We now wish to apply the conservation of
energy and momentum to the interaction of objects.

Collisions in One Dimension

Consider two objects whose initial velocities and masses are known:

mq ma
o— -——@
After the objects interact (or in this case, collide), we have
mq m2
-—@ o—
\ZK Vo'
Can we determine v,' and v,'? We know that momentum is conserved, so
mivy + mpvy = mavy + mavy’

L take sign into account

If the collision involves no dissipative forces, then we also have conservation of kinetic
energy
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1 1 2 1 A2, 1 n2
E mivy, + E moVy = E mi(vq’) + E mz(v2')

So, in this situation we have two equations and two unknowns, and we can solve for
both v, and v,'.

Consider a slightly different situation:
m4 and my mo

ma m2
‘—Vi> o m, stick ”—Vf>

We can solve this by conservation of momentum alone:
m,v; + 0 = (m; + m,)v, or v =[m,/(m; + m,)] v,

But conservation of kinetic energy also gives an equation relating v; and vy. Is this

equation consistent with the results from conservation of momentum? To answer this
guestion, we evaluate the kinetic energy before and after the collision as determined
by the conservation of momentum equation:

Ki = % m1Vi2 Ki = % (Mg + my) sz
= % (my + mZ)(mlm—imz)z v’
L (T md

\ K; < K; and kinetic energy is not conserved. The difference in kinetic energy
between the initial and final states has gone into heat or sound or whatever.

Rules:
first apply conservation of momentum (vector, results in 1 to 3 equations).
then evaluate the kinetic energies (1 equation)

We say the collision is elastic if kinetic energy is conserved. If kinetic energy is not
conserved, the collision is inelastic and K; <K;. Thus, kinetic energy may not provide

a constraint on the values of the momenta after the collision. Of course, even if kinetic
energy is not conserved, the total energy, including heat etc., must be conserved.
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