
PHYS 101 Lecture 16 - Moments of inertia 16 - 1 

© 2001 by David Boal, Simon Fraser University.  All rights reserved; further copying or resale is strictly prohibited. 

Lecture 16 - Moments of inertia 
 
What’s important: 
• conservation of angular momentum 
• gyroscope 
• moments of inertia 
Demonstrations: bike wheel, rotating stool, weights 
 
Conservation of angular momentum 
 
 We saw previously that linear momentum p is conserved unless there is a net 
external force: the applied force is the rate of change of linear momentum.  So too with 
angular momentum:  Angular momentum L is conserved unless there is a net 
external torque. 
 
 Consider how conservation of (scalar) angular momentum applies to a situation 
in which the moment of inertia changes.  The moment of inertia I for a single mass m 
executing a circle of radius r about an axis is 
     I = mr2. 
For a group of masses, all rotating with the same  ω: 
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Demo: A slowly rotating prof has a big moment of inertia by holding weights out at the 
end of his arms.  Dropping his arms into the vertical position reduces his moment of 
inertia.  Because angular momentum is conserved, then the prof’s angular velocity must 
increase as his moment of inertia decreases: 
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L  is conserved.    ∴  L  =  Ιbig  ωsmall  =  Ιsmall  ωbig 
 
 
Demo:  Prof sits on a stool which is free to rotate, and holds a rotating object in his 
hands: in the diagram, a bike wheel. 

BEFORE 

Prof

Lprof = 0

Lwheel  = L

Ltotal  = Lprof + Lwheel  = L

 
 

AFTER 

Prof

Lprof = 2L

Lwheel  = -L

Ltotal  = Lprof + Lwheel  = 2L - L = L

 
 
Although we have not discussed the vector nature of L, the rotating object has an 
angular momentum, pointing in a particular direction.  Prof changes the direction of the 
angular momentum of the object by changing its orientation.  But the total angular 
momentum of the system is conserved, with the result that the angular momentum of 
the prof must change in an equal and opposite way to the change of the rotating object.  
There are many other examples of conservation of angular momentum that don't refer to 
its vector nature, such as motion of comets. 
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Moments of Inertia in Detail 
 
Moment of inertia for point-like masses:  I = Σi mi ri

2. 
 
If the mass distribution is continuous:  I = Σi ri

2 Δm 
 

R

element
of mass

i )  Ring of radius  R,
      mass  M.

 
 
Break the mass of the ring up into N small segments each of mass Δm = M /N.  Then Ι 
is just a sum over all elements Δm, each a distance R from the center: 
 I = Σi ri

2 Δm = R2 Σi Δm = MR2. 
If the axis of rotation were in the plane of the ring, the moment would drop by a factor of 
2. 
 
 
ii)  Thin rod of length L and mass M (calculus) 

  
 

 
 
 
 
Axis through the centre: I = M L2/12; axis through the end: I = M L2/3. 
Demo:  pencil oscillating about an axis through its centre and through an end. 
 
 
iii )  Disk  (more calculus!) 

  

!   =       M R2
1
2

(axis perpendicular to plane)

 
If the axis were in the plane of the disk, then the moment would drop by a factor of 2. 
 
 
 
 
 

   mass of this element is 
[mass per unit length] • Δx 

L/2 -L/2 
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iv )  Solid Sphere  (still calculus!) 

  

!   =       M R2
2
5

(axis through centre)

 
 
 
v)  Ellipsoid 
 
This is a 3-dimensional shape is that swept out by a 2-dimensional ellipse when it is 
rotated about one of its symmetry axes (could be prolate or oblate).  The axis of rotation 
of the ellipsoid itself could be around any axis.  The shape is characterized by two 
lengths: 
 length 2a and width 2b (major and minor axes) 
For rotation along the major axis: 
 I = (2/5) Mb 2 
which looks just like the result for a sphere. 
 
Example: 
Let's approximate a bacterium as being an ellipsoid of length 2a = 6 µm and width 2b = 
2 µm (in most cases, a better approximation for a cylindrical bacterium is a straight 
cylinder capped at each end by hemispheres).  For a torque of 10-18 N•m (typical, if not a 
little low, for a flagellum) what angular acceleration would be experienced by the 
bacterium? 
 
We need both the mass and moment of inertia of the bacterium.  For the mass, use the 
density of water 103 kg/m3 as being the average density for the cell: 
 M = [density] • [volume] 
  = [density] • (4π/3) ab 2  (ellipsoid) 
  = 103 (4π/3) (3x10-6) (1x10-6)2 
  = 4π x 10-15 kg 
  = 1.26 x 10-14 kg. 
 
Knowing M, we can calculate the moment of inertia: 
 I = (2/5) Mb 2 
  = (2/5) 1.26x10-14 • (1x10-6)2 
  = 5.03 x 10-27 kg•m2. 
 
Then a torque of 10-18 N•m2 would generate an angular acceleration of 
 α = τ / I = 10-18 / 5x10-27 = 2x108 rad/s2. 
This is immense!  Why doesn't the bacterium reach the speed of light in an hour?  Drag. 
 


