Lecture 2: Acceleration

What's important.

- relationships between displacement, velocity, acceleration
- permutations of two basic equations for motion in one dimension
- vectors

Demonstrations: none

Acceleration

We can go to higher order rates of change by looking at the rate of change of the velocity (since $s=|\mathbf{v}|$, then we will deal with velocities rather than speeds).
[average acceleration] = $\overline{\mathbf{a}}=\frac{\mathbf{v}_{2}-\mathbf{v}_{1}}{t_{2}-t_{1}} \quad$ (independent of path)
[instantaneous acceleration] $=\mathbf{a}=\frac{\Delta \mathbf{v}}{\Delta t} \quad$ as $\Delta t \rightarrow 0$ (which becomes $\mathbf{a}=d \mathbf{v} / d t$)
In terms of graphs:

For example, suppose that the motor fails on a boat heading into the wind:

Constant acceleration in one dimension

To obtain x from v, or v from a (that is, to proceed in the opposite direction from the rates), one takes areas under the curves of time-evolution graphs. For example, a car travelling at a constant speed of $100 \mathrm{~km} / \mathrm{hr}(\mathrm{s})$ covers a distance of $100 \mathrm{~km}(s t)$ in a time of 1 hour (t). The distance is the product of s and t, and is the area under the s vs t graph. We apply this to constant acceleration in one dimension
$a \rightarrow v$

The area under the curve gives the change in v (that is, $\Delta v=v-v_{0}$), NOT v itself. From the graph of constant acceleration vs t,
$\Delta v=$ area under a vs $t=a t$

$$
\Rightarrow \quad v-v_{0}=a t
$$

$$
\begin{equation*}
\Rightarrow \quad v=v_{0}+a t \tag{1}
\end{equation*}
$$

Eq. (1) shows that the v vs t curve should be a straight line with a y-intercept of v_{0}.
$v \rightarrow x$

Although (2) looks like a linear equation in time (whereas the x vs. t is anything but linear), in fact v contains time dependence. Substituting (1) into (2) to show the explicit time-dependence gives

$$
\begin{align*}
& x=\left(v_{0}+a t+v_{0}\right) t / 2=\left(2 v_{0}+a t\right) t / 2 \\
& \Rightarrow \quad x=v_{0} t+(1 / 2) a t^{2} \tag{3}
\end{align*}
$$

To confirm that the form of Eq. (3) is correct, take derivatives to obtain v and a.

Equations (1) and (2) can be written in other ways as well. For example, since the plot of $v v s$. t is linear, then the average velocity $v_{\text {av }}$ is just $\left(v+v_{0}\right) / 2$. Hence, Eq. (2) also can be written as

$$
\begin{equation*}
x=v_{\mathrm{av}} t \tag{4}
\end{equation*}
$$

Alternatively, one could invert (1) to find t,

$$
t=\left(v-v_{0}\right) / a
$$

and substitute the result into (2) to obtain

$$
\begin{equation*}
x=\left(v^{2}-v_{0}^{2}\right) / 2 a \tag{5}
\end{equation*}
$$

Variable acceleration in one dimension

Eqs. (2) - (5) only hold if the acceleration is constant. If it is not constant, the area under the a vs. t curve must be determined by some analytic or numerical means:

Vectors

In this course, we are concerned with motion in three dimensions, and this requires us to use vectors.

Scaler: a quantity with magnitude only, e.g. distance.

Vector: a quantity with magnitude and direction, e.g. position.

Denote position vector as \vec{R}.
This is called the displacement of the object with respect to the origin.

Addition:
The addition of vectors is not the same procedure as the addition of scalers:

Add \vec{A} to \vec{B}

Addition rule: put tip of \vec{A} to tail of \vec{B}, resultant runs from tail of \vec{A} to tip of \vec{B}.

Resultant $\quad \vec{C}=\vec{A}+\vec{B}$
Note that the order in which the vectors are added doesn't matter.

Subtraction:

$\vec{A}-\vec{B} \quad$| Form negative of \vec{B}, |
| :--- |
| then add as usual. |

Magnitude:
The length of vector \mathbf{A} is denoted by $|\mathbf{A}|$.
Scaler times vector:

$$
a \vec{A}=\vec{A}+\vec{A}+\vec{A} \ldots . \quad \text { "a" times. }
$$

Multiplication:

There are three products that one can form from vectors, two of which (the dot and cross product) are needed in this course. The dot product of two vectors is a scalar quantity, and hence the dot product also is called the scalar product. The notation for the dot product, and its operation, are:

This operation is equivalent to taking the projection of one vector times the length of the other:

Note that the dot product of a vector with itself is just the square of the vector's length

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{A}}=|\overrightarrow{\mathbf{A}}||\mathbf{A}| \cos (0)=A^{2}
$$

It is often useful to represent vectors in terms of their Cartesian components:

$$
\mathbf{A}=\left(a_{x}, a_{y}, a_{z}\right)
$$

Then
$\mathbf{A}+\mathbf{B}=\left(a_{\mathrm{x}}+b_{\mathrm{x}}, a_{\mathrm{y}}+b_{\mathrm{y}}, a_{\mathrm{z}}+b_{\mathrm{z}}\right)$
and
$\mathbf{A} \cdot \mathbf{B}=\left(a_{x} b_{x}, a_{y} b_{y}, a_{z} b_{z}\right)$.

