Lecture 20-Oscillatory motion and pendula

What's important: (lecture takes more than an hour to complete)

- simple harmonic motion
- oscillation period of a spring
- simple pendulum

Demonstrations:

- mass on a spring
- projected motion
- simple pendulum
- Pasco track with computer data acquisition

Oscillatory Motion

We introduced Hooke's Law as an example of a force that increases linearly with the displacement from equilibrium:

The motion of an object obeying Hooke's Law is referred to as simple harmonic motion (or SHM). The apparent form of this oscillatory motion can be seen by making a plot of $x(t)$:

Drawn properly, this curve would look suspiciously like a sine or cosine function. Although this can be established directly with calculus, we must take a somewhat circuitous route here:, namely the projection of uniform circular motion on an axis.

Demo: mass on a spring compared to rotation of a ping-pong ball attached to a disk

Mathematically, the motion of the ball is:

The circle has a radius A and the object moves with a speed v_{0}. Starting at $\theta=0$ when $t=0$, the y-component is given by

$$
y(t)=A \sin \theta
$$

But θ is a function of t, according to the usual

$$
\theta=\omega t
$$

where ω is the angular speed, so we have

$$
\begin{equation*}
y(t)=A \sin \omega t . \tag{1}
\end{equation*}
$$

The projection of the velocity vector on the y-axis also varies with time according to $v_{\mathrm{y}}=v_{\mathrm{o}} \cos \theta$.

Substituting $\theta=\omega t$ and $v_{\mathrm{o}}=\omega A$ (which is just $v=\omega R$ for this situation), we have

$$
\begin{equation*}
v_{\mathrm{y}}=\omega A \cos \omega t . \tag{2}
\end{equation*}
$$

Lastly, the magnitude of the centripetal acceleration is

$$
a=v_{0}^{2} / A=\omega^{2} A
$$

Again, the y component of this is

$$
\begin{equation*}
a_{y}=-\omega^{2} A \sin \omega t \tag{3}
\end{equation*}
$$

Demo: show the horizontal motion of a cart on a spring agrees with:

OK, so we've now found y, v_{y} and a_{y} for the projection, which we know is sinusoidal. The next step is to find the relation between a_{y} and y. This is easy. Start with (3) and group the terms as

$$
\begin{equation*}
a_{y}=-\omega^{2}(A \sin \omega t) \tag{4}
\end{equation*}
$$

then substitute (1) into (4)

$$
\begin{equation*}
a_{y}(t)=-\omega^{2} y(t) . \tag{5}
\end{equation*}
$$

This is the relation between acceleration and position for the projection, valid for all times t. Does the spring obey this? YES, as can be seen from Newton's law:

$$
F=m a=-k x
$$

or

$$
\begin{equation*}
a=-(k / m) x \tag{6}
\end{equation*}
$$

In other words, the spring obeys sinusoidal motion, with an angular speed

$$
\omega^{2}=k / m
$$

or

$$
\begin{equation*}
\omega=(\mathrm{k} / \mathrm{m})^{1 / 2} . \tag{7}
\end{equation*}
$$

We can obtain the frequency and period for the motion through the usual substitutions

$$
\omega=2 \pi f=2 \pi / T
$$

so

$$
T=2 \pi(m / k)^{1 / 2} \quad \text { and } \quad f=(1 / 2 \pi) \cdot(k / m)^{1 / 2}
$$

Just to emphasize, the characteristic relationship for simple harmonic motion is

$$
a=-\omega^{2} x
$$

Demo: calculate k and measure m of the oscillating spring, and confirm the expression for period.

Energy Conservation in SHM

The kinetic and potential energy for a spring in simple harmonic motion looks like:

By explicitly calculating K and U with the expressions for x and v, one can show

$$
\begin{aligned}
E=K & +U=(1 / 2) k A^{2} \cos ^{2} \omega t+(1 / 2) k A^{2} \sin ^{2} \omega t \\
& =(1 / 2) k A^{2}\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right) \\
& =k A^{2} / 2 .
\end{aligned}
$$

Since both k and A are constants, then so is E - total energy is conserved.

Simple Pendulum

Consider a mass m suspended by a massless string of length ℓ. When displaced from its equilibrium position, the mass is subject to a restoring force

In a coordinate system which has one axis along the string,

$$
\begin{array}{ll}
T=m g \cos \theta & \text { balanced } \\
F_{\mathrm{R}}=-m g \sin \theta & \text { unbalanced }
\end{array}
$$

Let's work in linear coordinates, rather than angles, and use the distance x of the mass from the vertical, as in

Now, $\sin \theta=x / l$, so

$$
F_{\mathrm{R}}=-m g x / l
$$

For θ small, F_{R} is roughly horizontal, as is x, so

$$
F_{\mathrm{R}}=m a=-m g x / l
$$

or

$$
a=-g x / l .
$$

The relation between a and x is that of simple harmonic motion, so

$$
\omega=(g / l)^{1 / 2} \quad \text { or } \quad T=2 \pi(l / g)^{1 / 2}
$$

Note: T does not depend on the mass m or the amplitude $A!!$

Example What is the period of a pendulum 1.00 m long?

$$
\mathbf{T}=2 \pi \sqrt{\frac{1.00}{9.81}}=2.006 \mathrm{sec}
$$

