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Lecture 20 - Oscillatory motion and pendula 
 
What’s important: (lecture takes more than an hour to complete) 
• simple harmonic motion 
• oscillation period of a spring 
• simple pendulum 
Demonstrations: 
• mass on a spring 
• projected motion 
• simple pendulum 
• Pasco track with computer data acquisition 
 
Oscillatory Motion 
 
 We introduced Hooke’s Law as an example of a force that increases linearly with 
the displacement from equilibrium: 
 

   

x

F  =  - kx
! !

 
The motion of an object obeying Hooke’s Law is referred to as simple harmonic motion 
(or SHM).  The apparent form of this oscillatory motion can be seen by making a plot of 
x(t): 
 

 
 
 
 
 
 
 
 
Drawn properly, this curve would look suspiciously like a sine or cosine function.  
Although this can be established directly with calculus, we must take a somewhat 
circuitous route here:, namely the projection of uniform circular motion on an axis. 
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Demo: mass on a spring compared to rotation of a ping-pong ball attached to a disk 
 

 
 
 
 
 
 
 
 
 
 
 
 
Mathematically, the motion of the ball is: 
 

 
 
 
 
 
 
 
The circle has a radius A and the object moves with a speed vo.  Starting at θ = 0 when  
t = 0, the y-component is given by 
 y(t) = A sinθ. 
 
But θ is a function of t, according to the usual 
 θ = ωt, 
 
where ω is the angular speed, so we have 
 y(t) = A sin ωt.        (1) 
 
The projection of the velocity vector on the y-axis also varies with time according to 
 vy = vo cosθ. 
 
Substituting θ = ωt and vo = ωA (which is just v = ωR for this situation), we have 
 vy = ωA cos ωt.        (2) 
 
Lastly, the magnitude of the centripetal acceleration is 
 a = vo

2/A = ω2A 
 
Again, the y component of this is 
 ay = - ω2A sin ωt.        (3) 
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Demo: show the horizontal motion of a cart on a spring agrees with: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OK, so we've now found y, vy and ay for the projection, which we know is sinusoidal.  
The next step is to find the relation between ay and y.  This is easy.  Start with (3) and 
group the terms as 
 ay = - ω2 (A sin ωt)        (4) 
 
then substitute (1) into (4) 
 ay(t) = - ω2 y(t).        (5) 
 
This is the relation between acceleration and position for the projection, valid for all 
times t.  Does the spring obey this?  YES, as can be seen from Newton's law: 
 
 F = ma = -kx 
or 
 a = -(k/m) x         (6) 
 
In other words, the spring obeys sinusoidal motion, with an angular speed 
 ω2 = k/m 
or 
 ω = (k/m)1/2.         (7) 
 
We can obtain the frequency and period for the motion through the usual substitutions 
 ω = 2πf = 2π/T 
so 
 T = 2π(m/k)1/2  and  f = (1/ 2π) • (k/m)1/2. 
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Just to emphasize, the characteristic relationship for simple harmonic motion is 
 

 
 
 
Demo: calculate k and measure m of the oscillating spring, and confirm the expression 
for period. 
 
Energy Conservation in SHM 
 
The kinetic and potential energy for a spring in simple harmonic motion looks like:  
 
 
 
 
 
 
 
By explicitly calculating K and U with the expressions for x and v, one can show 
 E = K + U = (1/2) kA2 cos2 ωt   +   (1/2) kA2 sin2ωt 
  = (1/2) kA2 (cos2 ωt  + sin2ωt) 

= kA2/2. 
 

Since both k and A are constants, then so is E – total energy is conserved. 
 
 
Simple Pendulum 
 
Consider a mass m suspended by a massless string  
of length l.  When displaced from its equilibrium position,  
the mass is subject to a restoring force 
 
 

!

T  (tension in string)

mg  cos !

mg

FR  =  - mg  sin !

 

a = -ω2 x 

t 

K.E. = mv2/2 

P.E. = kx2/2 

l 
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In a coordinate system which has one axis along the string, 
  T  =  mg  cosθ  balanced 
  FR  =  - mg sinθ  unbalanced 
 
Let's work in linear coordinates, rather than angles, and use the distance x of the mass 
from the vertical, as in 
 
 
 
 
 
 
Now, sinθ = x/l, so 
 FR = -mg x/l 
 
For θ small, FR  is roughly horizontal, as is x, so 
 FR  = ma = -mg x/l 
or 
 a = -g x/l. 
 
The relation between a and x is that of simple harmonic motion, so 
 ω = (g / l)1/2  or  T = 2π(l /g)1/2. 
 
Note: T does not depend on the mass m or the amplitude A!! 
 
Example What is the period of a pendulum 1.00 m long? 

T  =  2!
9.81

1.00! =   2.006  sec.
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