Lecture 20 - Oscillatory motion and pendula

What's important: (lecture takes more than an hour to complete)

- simple harmonic motion
- oscillation period of a spring
- simple pendulum

Demonstrations:

- mass on a spring
- projected motion
- simple pendulum
- Pasco track with computer data acquisition

Oscillatory Motion

We introduced Hooke's Law as an example of a force that increases linearly with the displacement from equilibrium:

The motion of an object obeying Hooke's Law is referred to as simple harmonic motion (or SHM). The apparent form of this oscillatory motion can be seen by making a plot of x(t):

Drawn properly, this curve would look suspiciously like a sine or cosine function. Although this can be established directly with calculus, we must take a somewhat circuitous route here:, namely the projection of uniform circular motion on an axis. Demo: mass on a spring compared to rotation of a ping-pong ball attached to a disk

Mathematically, the motion of the ball is:

The circle has a radius *A* and the object moves with a speed v_0 . Starting at $\theta = 0$ when t = 0, the *y*-component is given by

 $y(t) = A \sin \theta$.

But θ is a function of *t*, according to the usual $\theta = \omega t$,

where ω is the angular speed, so we have $y(t) = A \sin \omega t$.

(1)

The projection of the velocity vector on the *y*-axis also varies with time according to $v_y = v_o \cos \theta$.

Substituting $\theta = \omega t$ and $v_0 = \omega A$ (which is just $v = \omega R$ for this situation), we have $v_y = \omega A \cos \omega t$. (2)

- Lastly, the magnitude of the centripetal acceleration is $a = v_o^2 / A = \omega^2 A$
- Again, the *y* component of this is $a_y = -\omega^2 A \sin \omega t.$ (3)

Demo: show the horizontal motion of a cart on a spring agrees with:

OK, so we've now found y, v_y and a_y for the projection, which we know is sinusoidal. The next step is to find the relation between a_y and y. This is easy. Start with (3) and group the terms as

$$a_{\rm v} = -\omega^2 (A\sin\omega t) \tag{4}$$

then substitute (1) into (4)

$$a_y(t) = -\omega^2 y(t).$$
 (5)

This is the relation between acceleration and position for the projection, valid for all times *t*. Does the spring obey this? YES, as can be seen from Newton's law:

$$F = ma = -kx$$

$$a = -(k/m) x$$
(6)

In other words, the spring obeys sinusoidal motion, with an angular speed

$$\omega^{-} = k/m$$

$$\omega = (k/m)^{1/2}.$$
(7)

We can obtain the frequency and period for the motion through the usual substitutions $\omega = 2\pi f = 2\pi/T$

SO

or

or

$$T = 2\pi (m/k)^{1/2}$$
 and $f = (1/2\pi) \cdot (k/m)^{1/2}$.

Just to emphasize, the characteristic relationship for simple harmonic motion is

```
a = -\omega^2 x
```

Demo: calculate k and measure m of the oscillating spring, and confirm the expression for period.

Energy Conservation in SHM

The kinetic and potential energy for a spring in simple harmonic motion looks like:

By explicitly calculating K and U with the expressions for x and v, one can show $E = K + U = (1/2) kA^{2} \cos^{2} \omega t + (1/2) kA^{2} \sin^{2} \omega t$ $= (1/2) kA^{2} (\cos^{2} \omega t + \sin^{2} \omega t)$ $= kA^{2}/2.$

Since both k and A are constants, then so is E – total energy is conserved.

Simple Pendulum

Consider a mass *m* suspended by a massless string of length ℓ . When displaced from its equilibrium position, the mass is subject to a restoring force

In a coordinate system which has one axis along the string,

$T = mg \cos \theta$	balanced
$F_{\rm R} = -mg\sin\theta$	unbalanced

Let's work in linear coordinates, rather than angles, and use the distance *x* of the mass from the vertical, as in

Now, $\sin\theta = x/l$, so $F_{\rm B} = -mg x/l$

For θ small, F_{R} is roughly horizontal, as is *x*, so

$$F_{\rm R} = ma = -mg x/l$$

or

$$a = -g x/l$$
.

The relation between *a* and *x* is that of simple harmonic motion, so $\omega = (g / l)^{1/2}$ or $T = 2\pi (l / g)^{1/2}$.

Note: T does not depend on the mass m or the amplitude A!!

Example What is the period of a pendulum 1.00 m long?

 $\mathbf{T} = 2\pi \sqrt{\frac{1.00}{9.81}} = 2.00_6$ sec.