Lecture 28 - Bernoulli's equation

What's important:

- Bernoulli's equation
- Venturi tube

Demonstrations:

- Venturi tube; misc. air flow demonstrations (funnels, vacuum cleaners, aspirators)

Bernoulli's equation

Let's specialize to the case of an incompressible fluid ($\rho=$ constant) but now include the effects of gravity and kinetic energy. We return to the diagram for streamline flow that we introduced before:

At end \#1, the total mechanical energy of the volume element is

$$
E_{1}=1 / 2 \Delta m_{1} v_{1}^{2}+\Delta m_{1} g y_{1}
$$

The same applies at end \#2:

$$
E_{2}=1 / 2 \Delta m_{2} v_{2}^{2}+\Delta m_{2} g y_{2}
$$

If the flow is steady, there is no change in the mechanical energy at a location as a function of time. Further, since mass is conserved in the flow, then

$$
\Delta m_{1}=\Delta m_{2}=\Delta m
$$

and we have

$$
E_{2}-E_{1}=1 / 2 \Delta m v_{2}^{2}+\Delta m g y_{2}-1 / 2 \Delta m v_{1}^{2}-\Delta m g y_{1} .
$$

But this difference in energy must come from the work being applied to, or done by, the fluid. Again, taking the density ρ to be constant.

At end \#1:

$$
\text { work done on the fluid }=\begin{aligned}
W_{1} & =[\text { force }] \cdot[\text { distance }] \\
& =\left(P_{1} A_{1}\right) \cdot\left(v_{1} \Delta t\right) \\
& =P_{1}\left(\rho A_{1} v_{1} \Delta t\right) / \rho
\end{aligned}
$$

But $\rho A_{1} v_{1} \Delta t$ is just the mass Δm entering at end \#1, so

$$
W_{1}=P_{1} \Delta m / \rho .
$$

The same argument applies at end \#2, but now the work is being done by the system and hence the sign is reversed.

$$
W_{2}=-P_{2} \Delta m / \rho .
$$

Thus,

$$
W_{1}+W_{2}=\left(P_{1}-P_{2}\right) \Delta m / \rho
$$

But the work supplies the energy difference $E_{2}-E_{1}$, which is

$$
E_{2}-E_{1}=\Delta m\left\{1 / 2\left(v_{2}^{2}-v_{1}^{2}\right)+g\left(y_{2}-y_{1}\right)\right\}
$$

Thus

$$
\begin{aligned}
& \left(P_{1}-P_{2}\right) \Delta m / \rho=\Delta m\left\{1 / 2\left(v_{2}^{2}-v_{1}^{2}\right)+g\left(y_{2}-y_{1}\right)\right\} \\
& P_{1}-P_{2}=\rho\left\{1 / 2\left(v_{2}^{2}-v_{1}^{2}\right)+g\left(y_{2}-y_{1}\right)\right\}
\end{aligned}
$$

or

$$
P_{1}+\rho v_{1}^{2} / 2+\rho g y_{1}=P_{2}+\rho v_{2}^{2} / 2+\rho g y_{2} \quad \text { Bernoulli's equation }
$$

Consequences

One thing to note immediately about Bernoulli's equation is the situation where the height is unchanging: $y_{1}=y_{2}$. Then

$$
P_{1}+\rho v_{1}^{2} / 2=P_{2}+\rho v_{2}^{2} / 2 .
$$

This says that pressure decrease with velocity. This effect underlies the operation of airplane wings and many other devices, also responsible for tornadoes ripping the roofs off houses.
demo: blow horizontally over a piece of paper

operation of wing

pressure is lower on the top side of the wing because the air is moving faster ---> pressure difference gives the wing lift

Venturi tube

The Venturi tube (and its variants) provide a means of measuring the speed of a fluid through pressure differences; useful on pipes and slow planes.

Bernoulli's equation without gravity

$$
P_{1}+\rho v_{1}^{2} / 2=P_{2}+\rho v_{2}^{2} / 2
$$

or

$$
P_{1}-P_{2}=\rho\left(v_{2}^{2}-v_{1}^{2}\right) / 2
$$

We want to determine v_{1}; assume an incompressible fluid to get rid of v_{2} :

$$
v_{1} A_{1}=v_{2} A_{2}
$$

or

$$
v_{2} / v_{1}=A_{1} / A_{2}
$$

Then

$$
\begin{aligned}
P_{1}-P_{2} & =\rho\left(v_{2}^{2}-v_{1}^{2}\right) / 2 \\
& =\rho v_{1}^{2}\left(v_{2}^{2} / v_{1}^{2}-1\right) / 2
\end{aligned}
$$

$$
=\rho v_{1}^{2}\left(A_{1}^{2} / A_{2}^{2}-1\right) / 2
$$

We can invert this equation to solve for v_{1} :

$$
v_{1}^{2}=2\left(P_{1}-P_{2}\right) / \rho\left(A_{1}^{2} / A_{2}^{2}-1\right)
$$

In the apparatus, the pressure difference is

$$
\begin{aligned}
& P_{1}-P_{2}=\rho^{\prime} g h \\
& v_{1}^{2}=2\left(\rho^{\prime} / \rho\right) g h /\left(A_{1}^{2} / A_{2}^{2}-1\right)
\end{aligned}
$$

Now, almost everything appearing on the right-hand side is a property of the apparatus, so we can write

$$
\begin{aligned}
& \quad v_{1}^{2}=K h \\
& \text { where } \\
& K=2\left(\rho^{\prime} / \rho\right) g /\left(A_{1}^{2} / A_{2}^{2}-1\right) .
\end{aligned}
$$

