Lecture 30 - Random walks

What's important:

- random walks
- diffusion

Demonstrations: 4 sets of 12" plastic vectors

Random walks

The behaviour of a random walk underlies many physical phenomena, so it is worthwhile to derive its general form and then apply it to several situations of interest. We consider a walk with steps of equal length *b*, where the direction of successive steps is completely random:

We characterize a given walk by the end-to-end displacement vector \mathbf{r}_{ee} . To represent this mathematically, we use a set of bond vectors \mathbf{b}_i with the same magnitude and direction as the monomers. Then we construct \mathbf{r}_{ee} from all *N* vectors along the chain

$$\mathbf{r}_{ee} = \Sigma_{i=1,N} \, \mathbf{b}_i,\tag{1}$$

Demo: do 8 configurations with the plastic vectors and compare $\langle \mathbf{r}_{ee}^2 \rangle$ with Nb^2 .

The (squared) length of the walk is given by the dot product of \mathbf{r}_{ee} with itself:

$$\mathbf{r}_{ee} \cdot \mathbf{r}_{ee} = (\Sigma_{i=1,N} \mathbf{b}_i) \cdot (\Sigma_{j=1,N} \mathbf{b}_j)$$

= $(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3 +) \cdot (\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3 +)$
= $\mathbf{b}_1^2 + \mathbf{b}_2^2 + \mathbf{b}_3^2 ... + 2\mathbf{b}_1 \cdot \mathbf{b}_2 + 2\mathbf{b}_1 \cdot \mathbf{b}_3 + 2\mathbf{b}_1 \cdot \mathbf{b}_4 + ... + 2\mathbf{b}_2 \cdot \mathbf{b}_3$

In this sum, there are *N* terms of the form \mathbf{b}_{i}^{2} , each of which is just b^{2} , since all steps have the same length. Thus, for a given walk

$$\mathbf{r}_{ee}^{2} = Nb^{2} + 2\mathbf{b}_{1} \cdot \mathbf{b}_{2} + 2\mathbf{b}_{1} \cdot \mathbf{b}_{3} + 2\mathbf{b}_{1} \cdot \mathbf{b}_{4} + \dots + 2\mathbf{b}_{2} \cdot \mathbf{b}_{3} \dots$$
(2)

Now, we generate \mathbf{r}_{ee} for a given chain with Eq. (2). But there are an infinite number of random walks of *N* steps starting from the same origin:

We can find the average value of $\langle r_{ee}^2 \rangle$ by summing over all these paths. At first, this looks intimidating, but the mathematics is actually guite simple. From Eq. (2):

$$\langle \mathbf{r}_{ee}^{2} \rangle = Nb^{2} + 2(\mathbf{b}_{1} \cdot \mathbf{b}_{2})_{av} + 2(\mathbf{b}_{1} \cdot \mathbf{b}_{3})_{av} + 2(\mathbf{b}_{1} \cdot \mathbf{b}_{4})_{av} + \dots + 2(\mathbf{b}_{2} \cdot \mathbf{b}_{3})_{av} \dots$$
 (3)

where < ... > means "construct the average".

The average value of $\mathbf{b}_1 \cdot \mathbf{b}_2$ is the average of \mathbf{b}_1 with all other vectors \mathbf{b}_2 , some of which point in the same direction as \mathbf{b}_1 and some of which point in the opposite direction:

 $\mathbf{b}_1 \cdot \mathbf{b}_2 = b^2$ if \mathbf{b}_1 and \mathbf{b}_2 point in exactly the same direction $\mathbf{b}_1 \cdot \mathbf{b}_2 = -b^2$ if \mathbf{b}_1 and \mathbf{b}_2 point in exactly the opposite direction

The bottom line is that for every configuration with $\mathbf{b}_1 \cdot \mathbf{b}_2 = b_{12}$, there is another configuration with $\mathbf{b}_1 \cdot \mathbf{b}_2 = -b_{12}$, because the configurations are completely random. Thus, averaged over all possible configurations

$$(\mathbf{b}_1 \cdot \mathbf{b}_2)_{\rm av} = 0$$

The same goes for all other combinations, as long as the indices are different. So, we find the simple, elegant and very important result

 $< r_{ee}^{2} > = Nb^{2}$. (random walk)

Recognizing that the contour length L is equal to

L = Nbthen another way of writing $\langle \mathbf{r}_{ee}^2 \rangle$ is $\langle \mathbf{r}_{ee}^2 \rangle = bL$.

 $< r_{ee}^{2} > = bL.$ (random walk)

Example: proteins

A protein is a linear sequence of amino acids, of which 20 types are used for proteins in our bodies. Each contributes 0.36 nm to the string's contour length L (Creighton's Proteins)

AA - AA - AA - AA - AA

For example, the protein actin (major part of our muscles) is 375 AA long, giving an overall length of 135 nm. But the amino acid backbone of a protein does not behave like a stiff rod; rather, it wiggles and sticks to itself at various locations. The random walk gives an approximate value for its size (a better calculation would include selfinteractions along the protein chain):

$$<\mathbf{r}_{ee}^{2}> = Nb^{2} = 375 \ (0.36)^{2}$$

 $r_{\rm ee,av} \sim \sqrt{375} \ge 0.36 = 7.0 \text{ nm}$

In other words, the radius of the ball (<10 nm) is *much* less than its length when fully stretched (135 nm). Attractive interactions among the AAs reduces the size further still.

Persistence length

or

The calculation above was for a freely-jointed chain – any angular orientation of the joint has the same energy. What happens if this is not true: suppose that a strong deformation requires more energy than a mild deformation? As an example, consider the configurations of a saturated alkane, $-CH_2$ - (repeated), where the polar angle between successive carbons is close to the tetrahedral value of 109.5°, but the chain is free to rotate in the azimuthal angle about the C-C bond.

One can show that the general behaviour of the ideal chain $< r_{ee}^2 > \sim N$ still holds, but the prefactor in the scaling law is different. If the polar angle is fixed at α , then

$$< r_{ee}^2 > = Nb^2 (1 - \cos\alpha) / (1 + \cos\alpha)$$

where *b* is the bond length. Using $\alpha = 109.5^{\circ} (\cos \alpha = -1/3)$ (1 - cos α) / (1 + cos α) = (4/3) / (2/3) = 2

Thus, in this case

 $\langle r_{ee}^2 \rangle = 2Nb^2$ = (2b) (Nb) = (2b) L where L is the total length of the chain, L = Nb.

First, this shows that the scaling is the same as a freely jointed chain, but $\langle r_{ee}^2 \rangle$ is larger, because the chain is effectively stiffer.

Second, this suggests a way of parametrizing the stiffness of the chain through the introduction of a persistence length ξ :

 $< r_{ee}^{2} > = 2\xi L$ In the above examples:

© 2001 by David Boal, Simon Fraser University. All rights reserved; further copying or resale is strictly prohibited.

Freely jointed chain	ξ=b/2
Alkane model	$\xi = b$

Examples

Filament	<u>ξ (nm)</u>
Alkane	0.5
DNA	53
filamentous actin	10-20 x 10 ³
microtubules	1-6 x 10 ⁶

A simple calculation of $< r_{ee}^{2} >$ for DNA with a persistence length of 53 nm will show that bacterial DNA is balled up into a region roughly the size of a bactyerium, but human DNA is much too large to fit into a normal eucaryotic cell, let alone its nucleus.