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Lecture 30 – Random walks 
 
What’s important: 
• random walks 
• diffusion 
Demonstrations: 4 sets of 12" plastic vectors 
 
 
Random walks 
 
The behaviour of a random walk underlies many physical phenomena, so it is 
worthwhile to derive its general form and then apply it to several situations of interest.  
We consider a walk with steps of equal length b, where the direction of successive steps 
is completely random: 

ree

b2 b3

b4

b1

 
We characterize a given walk by the end-to-end displacement vector ree.  To represent 
this mathematically, we use a set of bond vectors bi with the same magnitude and 
direction as the monomers.  Then we construct ree from all N vectors along the chain 
 
 ree = Σi=1,N bi,        (1) 
 
Demo: do 8 configurations with the plastic vectors and compare <ree

2> with Nb 2. 
 
The (squared) length of the walk is given by the dot product of ree with itself: 
 
 ree • ree = (Σi=1,N bi) • (Σj=1,N bj) 
 
  = (b1 + b2 + b3 + ....) • (b1 + b2 + b3 + ....) 
 
  = b1

2 + b2
2 + b3

2 ... + 2b1•b2 + 2b1•b3 + 2b1•b4 + ... +  2b2•b3.... 
 
In this sum, there are N terms of the form bi

2, each of which is just b2, since all steps 
have the same length.  Thus, for a given walk 
 
 ree

2 = Nb2 + 2b1•b2 + 2b1•b3 + 2b1•b4 + ... +  2b2•b3....   (2) 
 
Now, we generate ree for a given chain with Eq. (2).  But there are an infinite number of 
random walks of N steps starting from the same origin: 
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We can find the average value of <ree

2> by summing over all these paths.  At first, this 
looks intimidating, but the mathematics is actually quite simple.  From Eq. (2): 
 
 <ree

2> = Nb2 + 2(b1•b2)av + 2(b1•b3)av + 2(b1•b4)av + ... +  2(b2•b3)av....  (3) 
 
where < … > means "construct the average". 
 
The average value of b1•b2 is the average of b1 with all other vectors b2, some of which 
point in the same direction as b1 and some of which point in the opposite direction: 
 b1•b2 = b2  if b1 and b2 point in exactly the same direction 
 b1•b2 = -b2  if b1 and b2 point in exactly the opposite direction 
 
The bottom line is that for every configuration with b1•b2 = b12, there is another 
configuration with b1•b2 = -b12, because the configurations are completely random.  
Thus, averaged over all possible configurations 
 (b1•b2)av = 0 
 
The same goes for all other combinations, as long as the indices are different.  So, we 
find the simple, elegant and very important result 
 <ree

2> = Nb2.    (random walk) 
 
Recognizing that the contour length L is equal to  
 L = Nb 
then another way of writing <ree

2> is 
 <ree

2> = bL.    (random walk) 
 
Example: proteins 
 
A protein is a linear sequence of amino acids, of which 20 types are used for proteins in 
our bodies.  Each contributes 0.36 nm to the string’s contour length L (Creighton’s 
Proteins) 
  AA  AA  AA  AA  AA 
 
For example, the protein actin (major part of our muscles) is 375 AA long, giving an 
overall length of 135 nm.  But the amino acid backbone of a protein does not behave 
like a stiff rod; rather, it wiggles and sticks to itself at various locations.  The random 
walk gives an approximate value for its size (a better calculation would include self-
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interactions along the protein chain): 
 <ree

2> = Nb2 = 375 (0.36)2 
or 
 ree,av

 ~ √375 x 0.36 = 7.0 nm 
 
In other words, the radius of the ball (<10 nm) is much less than its length when fully 
stretched (135 nm).  Attractive interactions among the AAs reduces the size further still. 
 
 
Persistence length 
 
The calculation above was for a freely-jointed chain – any angular orientation of the joint 
has the same energy.  What happens if this is not true: suppose that a strong 
deformation requires more energy than a mild deformation?  As an example, consider 
the configurations of a saturated alkane, -CH2- (repeated), where the polar angle 
between successive carbons is close to the tetrahedral value of 109.5o, but the chain is 
free to rotate in the azimuthal angle about the C-C bond. 
 
 
 
 
 
One can show that the general behaviour of the ideal chain <ree

2> ~ N still holds, but the 
prefactor in the scaling law is different.  If the polar angle is fixed at α, then 
  
 <ree

2> = Nb 2 (1 - cosα) / (1 + cosα) 
 
where b is the bond length.  Using α = 109.5o (cosα = -1/3) 
 (1 - cosα) / (1 + cosα) = (4/3) / (2/3) = 2 
 
Thus, in this case 
 <ree

2> = 2Nb 2 
  = (2b) (Nb) 
  = (2b) L 
where L is the total length of the chain, L = Nb. 
 
First, this shows that the scaling is the same as a freely jointed chain, but <ree

2> is 
larger, because the chain is effectively stiffer. 
 
Second, this suggests a way of parametrizing the stiffness of the chain through the 
introduction of a persistence length ξ: 
 <ree

2> = 2ξL 
  In the above examples: 
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 Freely jointed chain  ξ = b / 2 
 Alkane model  ξ = b 
 
 
Examples 
 
 Filament   ξ (nm) 
 Alkane   0.5 
 DNA    53 
 filamentous actin  10-20 x 103 
 microtubules   1-6 x 106 
 
A simple calculation of <ree

2> for DNA with a persistence length of 53 nm will show that 
bacterial DNA is balled up into a region roughly the size of a bactyerium, but human 
DNA is much too large to fit into a normal eucaryotic cell, let alone its nucleus.  
 
 
 
 
 
 
 


