Lecture 30 - Random walks

What's important:

- random walks
- diffusion

Demonstrations: 4 sets of 12 " plastic vectors

Random walks

The behaviour of a random walk underlies many physical phenomena, so it is worthwhile to derive its general form and then apply it to several situations of interest. We consider a walk with steps of equal length b, where the direction of successive steps is completely random:

We characterize a given walk by the end-to-end displacement vector \mathbf{r}_{ee}. To represent this mathematically, we use a set of bond vectors \mathbf{b}_{i} with the same magnitude and direction as the monomers. Then we construct $\mathbf{r}_{\text {ee }}$ from all N vectors along the chain

$$
\begin{equation*}
\mathbf{r}_{\mathrm{ee}}=\Sigma_{\mathrm{i}=1, \mathrm{~N}} \mathbf{b}_{\mathrm{i}}, \tag{1}
\end{equation*}
$$

Demo: do 8 configurations with the plastic vectors and compare $\left\langle\mathbf{r}_{\mathrm{ee}}{ }^{2}>\right.$ with $N b^{2}$.
The (squared) length of the walk is given by the dot product of \mathbf{r}_{ee} with itself:

$$
\begin{aligned}
\mathbf{r}_{\mathrm{ee}} \cdot \mathbf{r}_{\mathrm{ee}} & =\left(\Sigma_{\mathrm{i}=1, \mathrm{~N}} \mathbf{b}_{\mathrm{i}}\right) \cdot\left(\sum_{\mathrm{j}=1, \mathrm{~N}} \mathbf{b}_{\mathrm{j}}\right) \\
& =\left(\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}+\ldots .\right) \cdot\left(\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}+\ldots .\right) \\
& =\mathbf{b}_{1}^{2}+\mathbf{b}_{2}^{2}+\mathbf{b}_{3}^{2} \ldots+2 \mathbf{b}_{1} \cdot \mathbf{b}_{2}+2 \mathbf{b}_{1} \cdot \mathbf{b}_{3}+2 \mathbf{b}_{1} \cdot \mathbf{b}_{4}+\ldots+2 \mathbf{b}_{2} \cdot \mathbf{b}_{3} \ldots
\end{aligned}
$$

In this sum, there are N terms of the form \mathbf{b}_{i}^{2}, each of which is just b^{2}, since all steps have the same length. Thus, for a given walk

$$
\begin{equation*}
\mathbf{r}_{e e}^{2}=N b^{2}+2 \mathbf{b}_{1} \cdot \mathbf{b}_{2}+2 \mathbf{b}_{1} \cdot \mathbf{b}_{3}+2 \mathbf{b}_{1} \cdot \mathbf{b}_{4}+\ldots+2 \mathbf{b}_{2} \cdot \mathbf{b}_{3} \ldots \tag{2}
\end{equation*}
$$

Now, we generate $\mathbf{r}_{\text {ee }}$ for a given chain with Eq. (2). But there are an infinite number of random walks of N steps starting from the same origin:

We can find the average value of $\left\langle\mathbf{r e e}_{\text {ee }}{ }^{2}\right\rangle$ by summing over all these paths. At first, this looks intimidating, but the mathematics is actually quite simple. From Eq. (2):

$$
\begin{equation*}
\left\langle\mathbf{r}_{\mathrm{ee}}^{2}\right\rangle=N b^{2}+2\left(\mathbf{b}_{1} \cdot \mathbf{b}_{2}\right)_{\mathrm{av}}+2\left(\mathbf{b}_{1} \cdot \mathbf{b}_{3}\right)_{\mathrm{av}}+2\left(\mathbf{b}_{1} \cdot \mathbf{b}_{4}\right)_{\mathrm{av}}+\ldots+2\left(\mathbf{b}_{2} \cdot \mathbf{b}_{3}\right)_{\mathrm{av}} \ldots \tag{3}
\end{equation*}
$$

where <.. > means "construct the average".
The average value of $\mathbf{b}_{1} \cdot \mathbf{b}_{2}$ is the average of \mathbf{b}_{1} with all other vectors \mathbf{b}_{2}, some of which point in the same direction as \mathbf{b}_{1} and some of which point in the opposite direction:
$\mathbf{b}_{1} \cdot \mathbf{b}_{2}=b^{2}$ if \mathbf{b}_{1} and \mathbf{b}_{2} point in exactly the same direction
$\mathbf{b}_{1} \cdot \mathbf{b}_{2}=-b^{2}$ if \mathbf{b}_{1} and \mathbf{b}_{2} point in exactly the opposite direction
The bottom line is that for every configuration with $\mathbf{b}_{1} \cdot \mathbf{b}_{2}=b_{12}$, there is another configuration with $\mathbf{b}_{1} \cdot \mathbf{b}_{2}=-b_{12}$, because the configurations are completely random. Thus, averaged over all possible configurations

$$
\left(\mathbf{b}_{1} \cdot \mathbf{b}_{2}\right)_{\mathrm{av}}=0
$$

The same goes for all other combinations, as long as the indices are different. So, we find the simple, elegant and very important result

$$
\left\langle\mathbf{r}_{e e}^{2}\right\rangle=N b^{2} . \quad \text { (random walk) }
$$

Recognizing that the contour length L is equal to

$$
L=N b
$$

then another way of writing $\left\langle\mathbf{r e e}_{\mathrm{ee}}{ }^{2}\right\rangle$ is

$$
\begin{equation*}
\left\langle\mathrm{r}_{\mathrm{ee}}{ }^{2}\right\rangle=b L . \tag{randomwalk}
\end{equation*}
$$

Example: proteins

A protein is a linear sequence of amino acids, of which 20 types are used for proteins in our bodies. Each contributes 0.36 nm to the string's contour length L (Creighton's Proteins)

$$
A A-A A-A A-A A-A A
$$

For example, the protein actin (major part of our muscles) is 375 AA long, giving an overall length of 135 nm . But the amino acid backbone of a protein does not behave like a stiff rod; rather, it wiggles and sticks to itself at various locations. The random walk gives an approximate value for its size (a better calculation would include self-
interactions along the protein chain):

$$
\left\langle\mathbf{r}_{\mathrm{ee}}^{2}\right\rangle=N b^{2}=375(0.36)^{2}
$$

or

$$
r_{\mathrm{ee}, \mathrm{av}} \sim \sqrt{ } 375 \times 0.36=7.0 \mathrm{~nm}
$$

In other words, the radius of the ball ($<10 \mathrm{~nm}$) is much less than its length when fully stretched (135 nm). Attractive interactions among the AAs reduces the size further still.

Persistence length

The calculation above was for a freely-jointed chain - any angular orientation of the joint has the same energy. What happens if this is not true: suppose that a strong deformation requires more energy than a mild deformation? As an example, consider the configurations of a saturated alkane, $-\mathrm{CH}_{2}$ - (repeated), where the polar angle between successive carbons is close to the tetrahedral value of 109.5°, but the chain is free to rotate in the azimuthal angle about the $\mathrm{C}-\mathrm{C}$ bond.

One can show that the general behaviour of the ideal chain $\left\langle r_{\mathrm{ee}}{ }^{2}\right\rangle \sim N$ still holds, but the prefactor in the scaling law is different. If the polar angle is fixed at α, then

$$
\left\langle r_{\mathrm{ee}}^{2}\right\rangle=N b^{2}(1-\cos \alpha) /(1+\cos \alpha)
$$

where b is the bond length. Using $\alpha=109.5^{\circ}(\cos \alpha=-1 / 3)$

$$
(1-\cos \alpha) /(1+\cos \alpha)=(4 / 3) /(2 / 3)=2
$$

Thus, in this case

$$
\begin{aligned}
\left\langle r_{\mathrm{ee}}^{2}\right\rangle & =2 N b^{2} \\
& =(2 b)(N b) \\
& =(2 b) L
\end{aligned}
$$

where L is the total length of the chain, $L=N b$.
First, this shows that the scaling is the same as a freely jointed chain, but $\left\langle r_{\text {ee }}^{2}\right\rangle$ is larger, because the chain is effectively stiffer.

Second, this suggests a way of parametrizing the stiffness of the chain through the introduction of a persistence length ξ :

$$
\left\langle r_{\mathrm{ee}}^{2}\right\rangle=2 \xi L
$$

In the above examples:
Freely jointed chain
$\xi=b / 2$
Alkane model
$\xi=b$

Examples

Filament	$\xi(\mathrm{nm})$
Alkane	0.5
DNA	53
filamentous actin	$10-20 \times 10^{3}$
microtubules	$1-6 \times 10^{6}$

A simple calculation of $\left\langle r_{\mathrm{ee}}{ }^{2}\right\rangle$ for DNA with a persistence length of 53 nm will show that bacterial DNA is balled up into a region roughly the size of a bactyerium, but human DNA is much too large to fit into a normal eucaryotic cell, let alone its nucleus.

