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Lecture 30x – Random walks (extended version) 
 
 Many aspects of mechanics that have been discussed so far in this course are 
deterministic, in the sense that from a given initial condition (say an initial position and 
velocity) classical mechanics predicts exactly what trajectory an object follows as a 
function of time.  Now, we turn to systems where individual trajectories may be difficult 
to follow for a variety of reasons – for example, there may be a whole collection of 
objects interacting with each other, and thus influencing their individual motion.   
Although we might despair of analyzing such systems, they may have colllective 
properties that can be described mathematically and obey compact physical laws.  For 
example, we don't need to know the inidivdual trajectories of molecules in a gas to 
understand the ideal gas law, which relates the pressure of a gas to its volume or 
temperature throughy PV = nRT.  In general, this part of mechanics is called statistical 
mechanics and it describes the properties of a system when averaged over: 
• the many particles in a system, or  
• many non-identical copies of a system, or 
• the time history of a system. 
 
 Most students have already run across this concept when they were first 
introduced to the atomic orbitals of quantum mechanics.  There, the orbital doesn't give 
the exact location of an electron, but rather the likelihood of finding an electron at a 
particular location.  Why this approach is so important to biological materials is because 
they are soft, in the sense that they are easy to deform, or they flop around at room 
temperature.  Some biological systems are soft even compared to a gas; for example, 
we've already discussed the very small compression resistance of the spectrin network 
of the red blood cell. 
 
 A discussion of statistical mechanics often starts with the behaviour of the so-
called random walk.  An anthropometric example of a random walk is the trajectory of a 
drunken sailor, to use a slightly derogatory description of sailors.  We imagine the sailor 
starts off a lamppost at night and, being drunk, disoriented and walking in the dark, 
cannot see where he is going.  He takes N steps, probably of slightly different length 
and certainly of varying direction.  Now, if he were sober and walking along a street in 
the daylight, the length of his path would be N times the length of each step.  At night, 
the distance that he walks is still governed by this rule (sum over the lengths of each 
step), but the end-to-end displacement of his trajectory is much less.  That is, if each 
step has the same length b, then 
 
 [distance] = Nb  (sober or drunk, its just the path length) 
 
but 
 [displacement] ~ Nb  (sober, straight line) 
 [displacement} << Nb (random directions). 
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It's probably unfair to use a nineteenth century stereotype of sailors as an illustration, 
but one could also imagine random walks to be taken by animals and insects looking for 
food: a straight trajectory is followed for a short time and, if no food is found, the 
trajectory is randomly changed to a different direction. 
 
 Now, let's describe the random walk mathematically.  Characterize each step of 
the walk by a vector bi, which has a magnitude and direction.  The distance or contour 
length of the path, is the just the scalar sum over the individual steps: 
 [contour length] = L = Σi=1,N bi.      (1) 
 
Eq. (1) is a scalar equation – it is just a sum over the (scalar) lengths of each step.  
There is no direction dependence to Eq. (1) so that no matter how the path twists and 
turns, the contour length is always the same if the average step size is the same. 
 
 It's a different story for the displacement of the path, which is  the distance from 
the start point to the stop point.  Here, the end-to-end displacement is represented by 
the vector ree.  In the diagram below, it's easy to see that 
 L = b1 + b2 + b3 + b4  all scalars 
 
whereas 
 ree = b1 + b2 + b3 + b4 all vectors 
 

ree

b2 b3

b4

b1

 
For this walk, the magnitude of the displace ree is much less than L.  For N steps, the 
summation for the displacement is: 
 ree = Σi=1,N bi.         (2) 
 
 
Demo:  In class, we construct random walks with a series of plastic vectors (strips of 
rigid white plastic that are 1" wide and 1' long, to use imperial units) each of which has 
the same length which we define as B.  It doesn't matter what the particular size of B is.  
The "tip" of each vector is marked with coloured tape, one colour for each ten vectors.  
A vector is thrown randomly into the air, and, once it hits the floor, it is translated by 
hand without rotation so that its tail is placed on the tip of the previous vector.  After 10 
vectors have been joined together to form a single random walk, the end-to-end 
displacement ree is measured with a tape measure.  All walks have the same contour 
length L = 10B according to Eq. (1).  A set of measurements from class is: 
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  Trial  ree  L 
  1  5.5B  10B 
  2  2.5B  10B 
  3  0.8B  10B 
  4  0.5B  10B 
  5  4.5B  10B 
  6  4.2B  10B 
  7  5.6B  10B 
  8  3.0B  10B 
 
The data immediately show two things: 
•the magnitude of ree is barely more than 50% of L at the best, and is often much less 
•there is a range of values of ree. 
 
From the data, we now construct the mean value of ree

2.  Why square this?  Because it's 
a vector and, properly speaking, the length of a vector is found from the dot product of 
the vector with itself: 
 ree

2 =  ree• ree = magnitude of displacement 2 = ree
2. 

Yes, this equation looks trivial, but it says that the scalar length squared of a vector is 
equal to the (scalar) dot product of a vector with itself.  The data show that 
 <ree

2> = (5.52 + 2.52 + 0.82 + 0.52 + 4.52 + 4.22 + 5.62 + 3.02) B 2 / 8 
  = 14.5 B 2.        (3) 
The notation < … > means "take the average".  Notice just how small <ree

2> is compared 
to 
 L 2 = 100 B 2  (same for all walks) 
[end of demo] 
 
 
Random walks with equal steps 
 

Even though each individual value of ree
2 is different, it turns out that it is very 

easy to calculate the average value of ree
2 when taken over a large number of different 

configurations.  For now, each step is assumed to have the same unit length b, even 
though the directions are different from step to step.  From Eq. (2), the general form of 
the dot product of ree with itself for a particular walk is 
 
 ree • ree = (Σi=1,N bi) • (Σi=1,N bi) 
 
  = (b1 + b2 + b3 + ....) • (b1 + b2 + b3 + ....) 
 
  = b1

2 + b2
2 + b3

2 ... + 2b1•b2 + 2b1•b3 + 2b1•b4 + ... +  2b2•b3.... (4) 
 
Each of the terms in this sum is a scalar.  There are N terms of the form bi

2, each of 
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which is just b2, since all steps have the same length.  Thus, for a given walk 
 
 ree

2 = Nb2 + 2b1•b2 + 2b1•b3 + 2b1•b4 + ... +  2b2•b3....   (5) 
 
Now, we generate ree for a given chain with Eq. (5).  But there are an infinite number of 
random walks of N steps starting from the same origin: 
 

 
 
 
 
 
 
 
We find the average value <ree

2> by summing over all these paths.  At first, this looks 
intimidating, but the mathematics is actually quite simple.  From Eq. (5), the mean value 
<ree

2> is: 
 <ree

2> = Nb2 + 2(b1•b2)av + 2(b1•b3)av + 2(b1•b4)av + ... +  2(b2•b3)av....     (6) 
 
where (…)av and < … > mean "construct the average". 
 
The average value of b1•b2 is the average dot product of b1 with all other vectors b2 from 
all the different paths.  Some b2's point in the same direction as b1 and some point in the 
opposite direction: 
 b1•b2 = b2  if b1 and b2 point in exactly the same direction 
 b1•b2 = -b2  if b1 and b2 point in exactly the opposite direction 
 
The bottom line is that for every configuration with a particular scalar value b1•b2 = b12, 
there is another configuration with b1•b2 = -b12, because the orientations are completely 
random.  Thus, averaged over all possible configurations 
 (b1•b2)av = 0.         (7) 
 
The same goes for all other combinations, as long as the indices are different.  So, we 
find the simple, elegant and very important result 
 <ree

2> = Nb2.    (random walk)   (8) 
 
Recalling that the contour length L is equal to  
 L = Nb 
then another way of writing <ree

2> is 
 <ree

2> = bL.    (random walk)   (9) 
 
Returning to our in-class demo of N = 10 steps each of length B, Eq. (8) predicts that 
 <ree

2> = 10B 2    (demo) 
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The measured data give <ree
2> = 14B 2, which is in not bad agreement considering the 

nature of the experiment.  Certainly, we did not observe <ree
2> = 100B 2 expected for 

straight lines.   
 
Example: proteins 
 
A protein is a linear sequence of amino acids, of which 20 types are found in the 
proteins in our bodies.  Each contributes 0.36 nm to the contour length of the string 
  AA  AA  AA  AA  AA 
 
For example, the protein actin, a major part of our muscles, is 375 AA long, giving an 
overall length of about 135 nm.  But the amino acid backbone of a protein does not 
behave like a stiff rod; rather, it wiggles and sticks to itself at various locations.  The 
random walk gives an approximate value for its size (a better calculation would include 
self-interactions along the protein chain): 
 <ree

2> = Nb2 = 375 (0.36)2 
or 
 ree,av

 ~ √375 x 0.36 = 7.0 nm 
 
In other words, the radius of a random ball of actin (<10 nm) is much less than its length 
when fully stretched (135 nm). 
 
 
Persistence length 
 
 The calculation above was for a freely-jointed chain – any angular orientation of 
the joint has the same energy.  What happens if this is not true: suppose that a strong 
deformation requires more energy than a mild deformation?  As an example, consider 
the configurations of a saturated alkane, -CH2- (repeated), where the polar angle 
between successive carbons is close to the tetrahedral value of 109.5o, but the chain is 
free to rotate in the azimuthal angle about the C-C bond. 
 
 
 
 
 
That is, for a particular carbon-carbon bond C1-C2, the polar angle of the bond C2-C3 is 
fixed, but C3 is free to rotate azimuthally about the C1-C2 axis: 
 
 
 
 
 

C1 
C2 

C3 
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One can show that the general behaviour of the ideal chain <ree

2> ~ N still holds, but the 
prefactor in the scaling law is different.  If the polar angle C1-C2-C3 is fixed at α, then  
 <ree

2> = Nb 2 (1 - cosα) / (1 + cosα)     (10) 
 
where b is the bond length.  Using α = 109.5o, 
 (1 - cosα) / (1 + cosα) = (4/3) / (2/3) = 2 
 
Thus, in this case 
 <ree

2> = 2Nb 2 
  = (2b) (Nb) 
  = (2b) L        (11) 
where L is the total length of the chain, L = Nb.  Eq. (10) is referred to as the freely-
rotating chain, in contrast to the freely-jointed chain that is the analogue of the random 
walk. 
 
What can we conclude by comparing Eqs. (9) and (11): 
 
First, the scaling of <ree

2> with L in Eq. (11) is the same as a freely jointed chain Eq. (9); 
however, <ree

2> is now larger by a factor of two because the chain is effectively stiffer. 
 
Second, this suggests a way of parametrizing the stiffness of the chain through the 
introduction of a persistence length ξ in 
 <ree

2> = 2ξL         (12) 
  In the above examples: 
 Freely jointed chain  ξ = b / 2 
 Alkane model  ξ = b. 
The physical interpretation of the persistence length is that it measures the minimum  
length scale along which a filament fluctuates in direction.  The stiffer the filament, the 
longer the "wavelength" of the deformation on the filament, and as a result, the larger ξ 
is. 
 
Biological examples 
A biological cell may contain a variety of filament of different thickness and stiffness.  
Some common examples are 
 
 Filament   ξ (nm) 
 Alkane   0.5 
 DNA    53 
 filamentous actin  10-20 x 103 
 microtubules   1-6 x 106 
Note that ξ of the cell's filaments span an enormous range.  How do they do that - does 
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the variation in stiffness mean that a microtubule is a million times the diameter of the 
DNA double helix?  The answer is "no" and the reason is that the persistence length of 
a uniform rod grows like the fourth power of its radius.  Thus, doubling the radius of a 
rod increases it persistence length by a factor of 24 = 16. 
 
 A simple calculation of <ree

2> for DNA with a persistence length of 53 nm shows 
that bacterial DNA is balled up into a region roughly the size of a bacterium, but human 
DNA is too large to fit into a normal eucaryotic cell, let alone its nucleus.  This 
calculation is left to the student as a problem set.  The fact that human DNA doesn't fit 
easily into a nucleus tells us that the cell has to develop a method for storing DNA when 
it's not in use.  Biology students know that the method is to wrap DNA in a coil around a 
protein called a histone; the size of the histone barrel, of course, must be of the order of 
the persistence length or too much energy would be needed to bend the DNA around it.  
You may want to check the radius of this biological barrel in a cell biology text. 
 
 
Some things to think about 
 
1.  It's easy to construct your own random walk in one dimension by flipping a coin - 
"heads" on a flip says take a step to the right along the x-axis and "tails" says take a 
step to the left along the x-axis.  Literary students may think of Rosencrantz and 
Guildenstern are Dead at this point.  Flip a coin repeatedly to sample a few large 
random walks in one dimension, or forget the coin and just draw out all the 
configurations explicitly for such a walk with 4 or 5 steps.  How fast does the walk 
approach the ideal limit <rx

2> = Nb 2 for a walk along the x-axis? 
 
2.  Carrying on with one-dimensional walks, what's the difference between 
 <rx>  mean value of the end-to-end vector rx 
 < |rx| >  mean value of the absolute value of rx (i.e. its length) 
 <rx

2>  mean value of rx•rx, 
where rx is the end-to-end distance of the walk starting at the origin.  Perhaps using 
data from a walk in part 1 (particularly an explicit 4-step walk), evaluate all of these 
quantities. 
 
 
 
 
 
 
 


