Lecture 31 - Diffusion

What's important:

- random walks
- diffusion

Demonstrations: 1 mL of food colouring placed in 2 L of still water; takes at least 45 minutes to diffuse, starting from the bottom of the flask

Diffusion equation

The concept of a random walk applies easily to the process of diffusion, where a particle moves randomly due to its collision with other particles. This might occur for a gas molecule banging against other molecules, or for a protein moving about in a cell. In either case, the motion is random.

Suppose that the diffusing particle makes one step of length b per unit time. Then the random walk tells us that the average end-to-end displacement of the walk is

$$\langle \mathbf{r}_{ee}^2 \rangle = b^2 t$$
 where $\langle ... \rangle$ indicates an average

where t is the number of time steps. Now, the question is how big is b? For a gas molecule travelling fast in a dilute environment, b might be very large, but for a protein moving in a crowded cell, b is rather very small. We recognize this variation in b by writing the displacement as

where D is the diffusion constant.

The factor of 6 is dimension-dependent. If an object diffuses in one dimension only (for example, a molecule moves randomly along a track) then

 $\langle \mathbf{r}_{ee}^2 \rangle = 2D t$ (diffusion in one dimension) and if it is confined to a plane, such as a protein moving in the lipid bilayer of the cell's plasma membrane

 $\langle \mathbf{r}_{ee}^2 \rangle = 4D t$ (diffusion in two dimensions)

In any of these cases, *D* has units of $[length]^2 / [time]$.

For most fluids, *D* is in the range 10^{-14} to 10^{-10} m²/s, depending on the size of the molecule. For the ATP molecule, which is the energy currency of the cell, $D \sim 3x10^{-10}$ m²/s.

Example How long does it take for a randomly moving protein to travel the distance of a cell diameter, say 10 μ m, if its diffusion constant is 10⁻¹² m²/s?

Solving

 $t = (\mathbf{r}_{ee}^{2})_{av} / 6D,$

and

 $t = (10^{-5})^2 / 6 \cdot 10^{-12} = 16$ seconds

So it takes a protein less than a minute to diffuse across a cell at this diffusion constant; it would take much longer if the medium were more viscous and $D \sim 10^{-14}$ m²/s.

Einstein equation

The diffusion constant can be determined analytically for a few specific situations. One case is the random motion of a sphere of radius *R* moving in a fluid of viscosity η , which Einstein solved using Stokes' Law: $F = 6\pi\eta R v$. We saw this formula for viscous drag back at the beginning of the course. The so-called Einstein relation reads:

$$D = k_{\rm B}T/6\pi\eta R$$

where $k_{\rm B}$ is Boltzmann's constant, having the numerical value $k_{\rm B} = 1.38 \times 10^{-23}$ J/K. We'll see $k_{\rm B}$ in the kinetic theory of gases in Lec. 33. At room temperature (20 °C) where T = 293 K, the combination

 $k_{\rm B}T = 293 \cdot 1.38 \times 10^{-23} = 4 \times 10^{-21} \, {\rm J}.$

Now, $k_{\rm B}T$ is close to the mean kinetic energy of a molecule, so the Einstein equation tells us that:

*the higher the temperature, the more kinetic energy an object has, the faster it diffuses. *the larger an object is, or the more viscous its environment, the slower it diffuses.

Example A biological cell contains internal compartments with radii in the range 0.3 to $0.5 \,\mu$ m. Estimate their diffusion constant.

Solution. Suppose a cellular object like a vesicle has a radius of 0.3 μ m and moves in a medium with viscosity $\eta = 2x10^{-3}$ kg / m·s. At room temperature, the Einstein relation predicts

 $D = 4x10^{-21} / (6\pi \cdot 2x10^{-3} \cdot 3x10^{-7}) = 4x10^{-13} \text{ m}^2/\text{s}.$