Lecture 31 - Diffusion

What's important:

- random walks
- diffusion

Demonstrations: 1 mL of food colouring placed in 2 L of still water; takes at least 45 minutes to diffuse, starting from the bottom of the flask

Diffusion equation

The concept of a random walk applies easily to the process of diffusion, where a particle moves randomly due to its collision with other particles. This might occur for a gas molecule banging against other molecules, or for a protein moving about in a cell. In either case, the motion is random.

Suppose that the diffusing particle makes one step of length b per unit time. Then the random walk tells us that the average end-to-end displacement of the walk is

$$
\left.\left\langle\mathbf{r}_{\mathrm{ee}}^{2}\right\rangle=b^{2} t \quad \text { where }<. .\right\rangle \text { indicates an average }
$$

where t is the number of time steps. Now, the question is how big is b ? For a gas molecule travelling fast in a dilute environment, b might be very large, but for a protein moving in a crowded cell, b is rather very small. We recognize this variation in b by writing the displacement as

$$
\left\langle\mathbf{r e e}_{\mathrm{ee}}^{2}\right\rangle=6 D t
$$

(diffusion in three dimensions)
where D is the diffusion constant.
The factor of 6 is dimension-dependent. If an object diffuses in one dimension only (for example, a molecule moves randomly along a track) then

$$
\left\langle r_{e e}^{2}\right\rangle=2 D t \quad \text { (diffusion in one dimension) }
$$

and if it is confined to a plane, such as a protein moving in the lipid bilayer of the cell's plasma membrane

$$
\left\langle\mathbf{r}_{\mathrm{ee}}^{2}\right\rangle=4 D t \quad \text { (diffusion in two dimensions) }
$$

In any of these cases, D has units of $[/ e n g t h]^{2} /[$ time $]$.
For most fluids, D is in the range 10^{-14} to $10^{-10} \mathrm{~m}^{2} / \mathrm{s}$, depending on the size of the molecule. For the ATP molecule, which is the energy currency of the cell, $D \sim 3 \times 10^{-10}$ $\mathrm{m}^{2} / \mathrm{s}$.

Example How long does it take for a randomly moving protein to travel the distance of a cell diameter, say $10 \mu \mathrm{~m}$, if its diffusion constant is $10^{-12} \mathrm{~m}^{2} / \mathrm{s}$?

Solving
$t=\left(\mathbf{r}_{\mathrm{ee}}{ }^{2}\right)_{\mathrm{av}} / 6 D$,
and

$$
t=\left(10^{-5}\right)^{2} / 6 \cdot 10^{-12}=16 \text { seconds }
$$

So it takes a protein less than a minute to diffuse across a cell at this diffusion constant; it would take much longer if the medium were more viscous and $D \sim 10^{-14} \mathrm{~m}^{2} / \mathrm{s}$.

Einstein equation

The diffusion constant can be determined analytically for a few specific situations. One case is the random motion of a sphere of radius R moving in a fluid of viscosity η, which Einstein solved using Stokes' Law: $F=6 \pi \eta R v$. We saw this formula for viscous drag back at the beginning of the course. The so-called Einstein relation reads:

$$
D=k_{\mathrm{B}} T / 6 \pi \eta R
$$

where k_{B} is Boltzmann's constant, having the numerical value $k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$. We'll see k_{B} in the kinetic theory of gases in Lec. 33. At room temperature $\left(20{ }^{\circ} \mathrm{C}\right)$ where $T=293 \mathrm{~K}$, the combination

$$
k_{\mathrm{B}} T=293 \cdot 1.38 \times 10^{-23}=4 \times 10^{-21} \mathrm{~J} .
$$

Now, $k_{\mathrm{B}} T$ is close to the mean kinetic energy of a molecule, so the Einstein equation tells us that:
*the higher the temperature, the more kinetic energy an object has, the faster it diffuses. *the larger an object is, or the more viscous its environment, the slower it diffuses.

Example A biological cell contains internal compartments with radii in the range 0.3 to $0.5 \mu \mathrm{~m}$. Estimate their diffusion constant.

Solution. Suppose a cellular object like a vesicle has a radius of $0.3 \mu \mathrm{~m}$ and moves in a medium with viscosity $\eta=2 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. At room temperature, the Einstein relation predicts

$$
D=4 \times 10^{-21} /\left(6 \pi \cdot 2 \times 10^{-3} \cdot 3 \times 10^{-7}\right)=4 \times 10^{-13} \mathrm{~m}^{2} / \mathrm{s}
$$

