Lecture 33 - Kinetic theory of gases

What's important:

- kinetic theory of gases

Demonstrations:

- marbles in a box

Text:Walker, Secs. 17.1, 17.2
Problems:

Gas Laws

In chemistry, we learn that two laws govern the behaviour of dilute gases:

- Boyle's law:

$$
V \propto 1 / P
$$

- Charles' law:

$$
V \propto T
$$

These can be combined to read

$$
P V / T=\text { constant } \quad \text { (ideal gas law) }
$$

In this lecture, we derive the ideal gas law assuming that the molecules of the gas are point particles moving randomly within a confining box of volume V. The gas pressure results from the molecules colliding elastically with the walls of the container.

Kinetic model

We confine N molecules within a cube of volume V

All molecules have the same mass m and move with the same speed v.
Suppose for now that each molecule can move along only one of the Cartesian directions x, y, or z.

Then, on average:
$N / 3$ molecules move along a given axis
$N / 6$ molecules move towards each wall
When a molecule collides elastically with a wall, the wall is given an impulse $2 m v$.
How many molecules collide with a wall in time t?

All molecules within a distance vt moving towards the wall will collide with it in time t.
Further, all molecules within the volume Avt will collide with area A on the wall.
This number of molecules equals the density of molecules travelling in the right direction, times the volume of the box Avt.

$$
\begin{array}{ll}
& {[\text { density }]=(N / 6) / \mathrm{V}} \\
\text { or } \quad & {[\text { number }]=[\text { density }] \cdot[\text { volume of box }]=A v t \cdot(N / 6) / \mathrm{V}} \\
& {[\text { number }]=N A v t / 6 \mathrm{~V} .}
\end{array}
$$

These molecules give the area A an impulse

$$
\begin{aligned}
{[\text { impulse }=2} & m v \cdot[\text { number }] \\
& =2 m v N A v t / 6 \mathrm{~V} \\
& =m v^{2} N A t / 3 \mathrm{~V} .
\end{aligned}
$$

Now, the force experienced by A is equal to the impulse divided by the time interval:

$$
\begin{aligned}
{[\text { force }] } & =[i m p u l s e] /[\text { time }] \\
& =\left(m V^{2} N A t / 3 V\right) / t \\
& =m v^{2} N A / 3 V .
\end{aligned}
$$

The pressure P experienced by the area A is just the force divided by the area, or

$$
P=\left(m v^{2} N A / 3 V\right) / A=m v^{2} N / 3 V
$$

This equation is starting to look like the ideal gas law. Let's transpose the volume, to write
$P V=(2 / 3)\left(m v^{2} / 2\right) N$.
The term inside the bracket is the kinetic energy of a single molecule. Thus, the $P V$ term is equal to $2 / 3$ of the total kinetic energy of the gas molecules.

Now, to make this expression look like the ideal gas result, we have to take a result from statistical mechanics relating the average kinetic energy of a particle to the temperature T of the system. The result is that
$m v_{\mathrm{x}}^{2} / 2=k_{\mathrm{B}} T / 2$ for each direction x, y or z.
where k_{B} is Boltzmann's constant: $k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
This result applies to the average value of $v_{\mathrm{x}}{ }^{2}$ of particles in thermal equilibrium. For particles moving in three dimensions,

$$
m v^{2} / 2=m\left(v_{\mathrm{x}}^{2}+v_{\mathrm{y}}^{2}+v_{\mathrm{z}}^{2}\right) / 2=3 k_{\mathrm{B}} T / 2 .
$$

Thus:

$$
P V=(2 / 3)\left(3 k_{\mathrm{B}} T / 2\right) N
$$

or

$$
P V=N k_{\mathrm{B}} T .
$$

This is the ideal gas law, although some students will be more familiar with the version commonly used in chemistry:
$P V=n R T$
where $n=$ number of moles and R is the universal gas constant.

Moles etc.

A mole is defined as a specific number of atoms or molecules, namely
$N_{o} \equiv$ Avogadro's number $=6.023 \times 10^{23}$.
To find the number of moles in an sample, just divide the total number of atoms N by N_{0}, to yield
$n=N / N_{0}$.
Thus,

$$
\begin{gathered}
P V=\left(N / N_{0}\right) \cdot\left(N_{0} k_{\mathrm{B}}\right) T \\
=n\left(N_{\mathrm{o}} k_{\mathrm{B}}\right) T .
\end{gathered}
$$

But the product $N_{0} k_{\mathrm{B}}$ is a constant, and is equal to the universal gas constant R, which can be verified by direct substitution:
$R=N_{\mathrm{o}} k_{\mathrm{B}}=8.31 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mole}$

Example

Just to familiarize ourselves with the chemist's version of the gas law, we calculate the volume occupied by a mole of gas at 1 atmosphere pressure and $T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$.

$$
\begin{aligned}
& P=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad T=273 \mathrm{~K} \\
& \text { reads } P V=n R T \\
& \qquad \begin{aligned}
& V=n R T / P \\
&=1 \cdot 8.31 \cdot 273 / 1.01 \times 10^{5} \\
&=0.0225 \mathrm{~m}^{3} \\
&=22.5 \text { litres }
\end{aligned} \quad\left(\mathrm{J} / \mathrm{N} / \mathrm{m}^{2}=\mathrm{m}^{3}\right)
\end{aligned}
$$

Note that the volume does not depend upon the structure of the gas molecules - we assumed that they are point particles.

Example

Estimate the average speed of the nitrogen molecules in the air under standard conditions

$$
\begin{aligned}
& T=273 \mathrm{~K} \\
& m=2 \cdot 14 \cdot 1.66 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

Then

$$
m v^{2} / 2=3 k_{\mathrm{B}} T / 2
$$

implies

$$
\begin{aligned}
& v^{2}=3 k_{\mathrm{B}} T / m \\
& \quad=3 \times 1.38 \times 10^{-23} \times 273 /\left(28 \times 1.66 \times 10^{-27}\right)=2.43 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}^{2} .
\end{aligned}
$$

Taking the square root gives

$$
v=493 \mathrm{~m} / \mathrm{s} .
$$

Lighter molecules, like hydrogen, are even faster.

