Lecture 4 - Centripetal acceleration

What's important:

- uniform circular motion
- centripetal acceleration

Demo: Tennis ball on string

This material does not take a full lecture; combine with adjacent lectures.

Circular Motion

As a simple, but often confusing, application of vectors, we consider circular motion. In the diagram, an object moves in a circular path with radius \mathbf{R} , in a clockwise direction (as indicate by the red arrow):

Let's look at the displacement and velocity vectors at four different positions, labelled 1 ... 4 in the diagram.

We can fill in the various intermediate positions to see how the **change in position** and **change in velocity** themselves change in time.

During the period **T** for one complete revolution,

Total distance covered = $\sum |\Delta \mathbf{R}|$ = $2\pi \mathbf{R}$ \therefore speed = $|\vec{\mathbf{v}}|$ = distance / time = $2\pi \mathbf{R} / \mathbf{T}$ \therefore acceleration = $2\pi \mathbf{v} / \mathbf{T}$ = $2\pi \mathbf{v} \left(\frac{\mathbf{v}}{2\pi \mathbf{R}}\right) = \frac{\mathbf{v}^2}{\mathbf{R}}$

At first sight, this may be a surprising result: the speed is constant, but there is an acceleration $\mathbf{a} = \mathbf{v}^2 / \mathbf{R}$. Of course, even though the speed is not changing, the velocity does change because it is changing direction.

Demo: use tennis ball on a string to illustrate how v varies inversely with R.

Further, since \vec{a} is parallel to $\Delta \vec{v}$, then \vec{a} must be in the opposite direction to \vec{R} as well:

We call \vec{a} the centripetal (or centre - seeking) acceleration.