Lecture 4 - Centripetal acceleration

What's important:

- uniform circular motion
- centripetal acceleration

Demo: Tennis ball on string
This material does not take a full lecture; combine with adjacent lectures.

Circular Motion

As a simple, but often confusing, application of vectors, we consider circular motion. In the diagram, an object moves in a circular path with radius \mathbf{R}, in a clockwise direction (as indicate by the red arrow):

$|\vec{R}|=$ radius \quad (fixed)

Let's look at the displacement and velocity vectors at four different positions, labelled 1 ... 4 in the diagram.

We can fill in the various intermediate positions to see how the change in position and change in velocity themselves change in time.

During the period \mathbf{T} for one complete revolution,

$$
\begin{aligned}
\text { Total distance covered }= & \sum|\Delta \mathbf{R}| \\
= & 2 \pi \mathbf{R}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total change in velocity }= & \sum|\Delta \mathbf{v}| \\
= & 2 \pi v
\end{aligned}
$$

\therefore speed $=|\overrightarrow{\mathrm{v}}|=$ distance $/$ time

$$
=2 \pi R / T
$$

\therefore acceleration $=2 \pi \mathbf{v} / \mathbf{T}$

$$
=2 \pi v\left(\frac{v}{2 \pi R}\right)=\frac{v^{2}}{R}
$$

At first sight, this may be a surprising result: the speed is constant, but there is an acceleration $\mathbf{a}=\mathbf{v}^{2} / \mathbf{R}$. Of course, even though the speed is not changing, the velocity does change because it is changing direction.

Demo: use tennis ball on a string to illustrate how v varies inversely with \mathbf{R}.
Finally, note that $\overrightarrow{\Delta \mathbf{v}}$ is in the opposite direction to $\overrightarrow{\mathbf{R}}$.

Further, since $\overrightarrow{\mathbf{a}}$ is parallel to $\overrightarrow{\Delta \mathbf{v}}$, then $\overrightarrow{\mathbf{a}}$ must be in the opposite direction to $\overrightarrow{\mathbf{R}}$ as well:

$$
\overrightarrow{\mathrm{R}} \uparrow \mid \overrightarrow{\mathrm{a}}
$$

We call $\overrightarrow{\mathbf{a}}$ the centripetal (or centre - seeking) acceleration.

