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Lecture 5 - Dynamics 
 
What’s important: 
• Newton’s three laws of dynamics 
Demonstrations: 
• force constant of a spring 
• scales for examples 
• clear plastic sheet for force on hand 
• force constant of an elastic rises with temperature 
 
Dynamics 
 
Kinematics permits us to describe the motion of particles expressed in terms of x and its 
rates of change v and a.  Dynamics relates the motion of particles to the forces 
between them.  Together, they constitute mechanics.  In these lectures, we examine 
Newtonian classical mechanics: 
• formulated by Newton (1642-1727) in terms of x, v and a. 
• classical --> speeds small compared to the speed of light. 
 
The first law tells us what happens if nothing happens: 
 
Newton’s First Law 
 
An object continues in its initial state of rest or motion with uniform velocity 
unless it is acted upon by an unbalanced force. 
 
Physical intuition:  suppose we are in a spaceship moving with respect to the Earth but 
far away from any planets, etc.  Then if the windows of the spaceship were covered 
over, we could not tell from the inside of the spaceship whether it was moving  [this is 
not true when it is accelerating!].  So, Newton’s first law does two things:   
• it puts “at rest” or “motion with uniform velocity” on the same footing 
• it says that nothing happens to this motion unless the object is acted upon by an 

unbalanced force. 
This is very different from Aristotle's view of the friction-dominated world, which held 
sway for almost 2 millenia, namely "everything stops unless there is a force to keep it 
moving". 
 
What does a force do to an object?  This is Newton’s Second Law. 
 
The acceleration a of an object subject to an unbalanced force Fnet is directly 
proportional to Fnet and inversely proportional to its mass m: 
 
 a = Fnet / m  or  Fnet = m a. 
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Notes: 
• This is a vector equation and applies component by component: 

 ax = Fx / m ay = Fy / m az = Fz / m. 
• a is parallel to Fnet. 
• Fnet is the vector sum of all applied forces:  Fnet = Σi fi. 
 
Newton’s Third Law deals with the interaction of the body delivering the force and the 
body receiving the force: 

Forces always occur in pairs.  If object A exerts a force  F  on object

B, then object B exerts a force  -F  on object A.  For every action

there is an equal and opposite reaction.

!

!

 
 
Consider an example:  use your hand to push a block across a table 

   
AA

 
We see the motion of the block and think that the only force present is the one acting on 
the block.  But look at the hand:  it is slightly flattened up against the block and the 
reason why it is flattened is the force which the block is exerting on the hand (demo). 
 
 
Some common forces 
 
1/r2 force (Newton's law of gravity and Coulomb's law) 
 F = Gm1m2 /r2    F = kQ1Q2 /r2 
    gravity     electrostatics 
 
On the surface of the Earth, m1 = mEarth  m2 = m (of object) r = REarth 
 F = (GmEarth /REarth

2) m 
Using 
 G = 6.67 x 10-11 Nm2/kg2 mEarth = 5.98 x 1024 kg REarth = 6.37 x 106 m 
we obtain 

(GmEarth /REarth
2) = 9.8 m/s2 = g 

  
Force proportional to distance 
 The force associated with springs and elastic bands (in fact, most materials) at 
small deformations is called Hooke's law: 
 F = -k x, 
where x is the (vector) displacement from equilibrium. 
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Demo: masses m, 2m, 3m, 4m on identical springs show linearity of force vs extension 
 
Demo: determine spring constant from plot of mg vs x. 
 
Origin of elasticity 
 
Elasticity can be viewed as having contributions from a change in energy or a change in 
entropy.  For example, when a lattice of close-packed atoms, as in a solid metal, are 
subject to an external tension, they move from their equilibrium position, resulting in an 
increase in their potential energy: 

 
 
 
 
 
 
This is in contrast with the behaviour of a polymer (a network of proteins, for example), 
which may not be close-packed and have a lot of freedom of movement: 
 
 
 
 
 
 
 
In the language of thermodynamics, the stretch has decreased the entropy of the chain 
network.  We'll return to a discussion of entropy later in the course, but for now we 
define it as a measure of the number of configurations available to a system.  For 
example, a molecular gas has high entropy when it can explore the entire volume of its 
container (lots of configurations) but lower entropy when it is forced into one corner of 
the container.   

at equilibrium:  x = 0 

displaced from 
equilibrium:  x ≠ 0 

displacement = x (negative, here) 

spring 

stretch 
metal 

increased 
potential 
energy 

stretch 
polymer 

decreased 
entropy 
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  high entropy     low entropy 
 
We know from everyday experience that work is required to compress a gas into a 
smaller volume – i.e., work is required to decrease the entropy of the gas.  So too with 
the polymer network: work is required to stretch the network because its entropy is 
being reduced. 
 
Entropy becomes more important compared to energy as the temperature of a system 
rises.  For a polymer network, this means that it becomes more difficult to stretch the 
network at higher temperatures.  In other words, the force constant of the network 
rises with temperature. 
 
Demo: a stretched elastic band shrinks when heated. 
 
 
The protein scaffolding in a red blood cell has been a highly-studied system in cell 
biology.  It's a two-dimensional network lining the cell membrane with six-fold 
connectivity. 

       
drawing from a microscope                           computer simulation 

 
The thin filaments are the protein spectrin and they have a spring constant of ~10-5 N/m. 
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Springs in series and parallel 
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Construct free-body diagrams for each.  Show by demonstration why the above weights 
are observed. 
 
 


