Demonstrations: none
Text. Fishbane 2-1, 2-2, 2-3, 2-4, 2-5
Problems: 15, 26, 27, 45, 48 from Ch. 2
What's important:
-relationships between displacement, velocity, acceleration -permutations of two basic equations for motion in one dimension

Position and time

Kinematics deals with movement, the change in position of an object as a function of time. For example, we can use a clock and (very long) meter stick to measure the motion of an object like a car

from which we can construct a position vs. time graph:

From the position, or displacement, we can construct the distance covered by the moving object. Distance is always positive, and depends upon the path followed in the motion. Although distance can be determined by displacement, the reverse is not true: you cannot obtain displacement from distance. Consider two different paths, 1 and 2 , on the following position vs. time graph:

The paths have the same distance vs. time graph, which cannot be uniquely inverted to give the original displacement vs. time graph.

Rates of change

Displacement and distance change with time. One can use two crude measures of the rate of change of displacement or distance, namely

$$
\begin{aligned}
\text { average velocity }=\overline{\mathbf{v}} & =\frac{\mathbf{x}_{2}-\mathbf{x}_{1}}{\mathbf{t}_{2}-\mathbf{t}_{1}} \quad \text { (independent of path) } \\
\text { average speed } & =\overline{\mathbf{s}}=\frac{\text { change in distance }}{\text { change in time }}
\end{aligned}
$$

Average speed and average velocity can be obtained from the slope of the line joining the two (position, t) or (distance, t) points:

$$
\text { slope }=\frac{\mathbf{x}_{2}-\mathbf{x}_{1}}{\mathbf{t}_{2}-\mathbf{t}_{1}}=\frac{\Delta \mathbf{x}}{\Delta t}
$$

Clearly, the average \mathbf{v} and \mathbf{s} can have quite different values:

[^0]We can define an instantaneous velocity \mathbf{v} (or instantaneous speed \mathbf{s}) by finding the slope of the tangent to a point on the curve:

Note that \mathbf{v} has a sign (positive or negative), but \mathbf{s} does not: the instantaneous speed is just the absolute value of the instantaneous velocity:

$$
\mathbf{s}=|\mathbf{v}|
$$

Acceleration

We can go to higher order rates of change by looking at the rate of change of the velocity (since $\mathbf{s}=|\mathbf{v}|$, then we will deal with velocities rather than speeds).

$$
\text { average acceleration }=\overline{\mathbf{a}}=\frac{\mathbf{v}_{2}-\mathbf{v}_{1}}{\mathbf{t}_{2}-\mathbf{t}_{1}} \quad \text { (independent of path) }
$$

$$
\text { instantaneous acceleration }=\frac{\Delta \mathbf{v}}{\Delta \mathbf{t}} \quad \text { as } \Delta \mathbf{t} \rightarrow 0
$$

[^1]
Constant acceleration

We showed above that one takes the slopes of time-evolution graphs to obtain rates of change:

$$
\text { x vs. t --slope--> v vs. } \mathbf{t} \text {--slope--> a vs. } \mathbf{t}
$$

To obtain \mathbf{x} from \mathbf{v}, or \mathbf{v} from a (that is, to proceed in the opposite direction from the rates), one takes areas under the curves of time-evolution graphs. For example, a car travelling at a constant speed of $100 \mathrm{~km} / \mathrm{hr}(\mathbf{s})$ covers a distance of $100 \mathrm{~km}(\mathbf{s t})$ in a time of 1 hour (\mathbf{t}). The distance is the product of \mathbf{s} and \mathbf{t}, and is the area under the $\mathbf{s} \mathrm{vs}$ t graph. We apply this to constant acceleration.
$\mathbf{a} \rightarrow \mathbf{v}$

The area under the curve gives the change in \mathbf{v} (that is, $\Delta \mathbf{v}=\mathbf{v}-\mathbf{v}_{0}$), NOT \mathbf{v} itself.

From the graph of constant acceleration vs \mathbf{t},

$$
\begin{align*}
& \Delta \mathbf{v}= \text { area under a vs } \mathbf{t}=\mathbf{a t} \\
& \Rightarrow \mathbf{v}-\mathbf{v}_{0}=\mathbf{a t} \\
& \Rightarrow \quad \mathbf{v}=\mathbf{v}_{\mathrm{O}}+\mathbf{a t} \tag{1}
\end{align*}
$$

Equation (1) shows that the \mathbf{v} vs \mathbf{t} curve should be a straight line with a y-intercept of v_{o}.
$\mathbf{v} \rightarrow \mathbf{x}$

$$
\begin{gather*}
\Delta \mathbf{x}=\text { area under } \mathbf{v} \text { vs } \mathbf{t}=\left(\mathbf{v}-\mathbf{v}_{0}\right) \mathbf{t} / 2+\mathbf{v}_{0} \mathbf{t} \\
\Rightarrow \quad \mathbf{x}-\mathbf{x}_{0}=\left(\mathbf{v}+\mathbf{v}_{0}\right) \mathbf{t} / 2 \\
\left.\Rightarrow \quad \mathbf{x}=\left(\mathbf{v}+\mathbf{v}_{0}\right) \mathbf{t} / 2 \quad \text { (if } \mathbf{x}_{0}=0\right) \tag{2}
\end{gather*}
$$

Although (2) looks like a linear equation in time (whereas the \mathbf{x} vs. \mathbf{t} is anything but linear), in fact \mathbf{v} contains time dependence. Substituting (1) into (2) to show the explicit time-dependence gives

$$
\begin{align*}
\mathbf{x} & =\left(\mathbf{v}_{\mathrm{O}}+\mathbf{a t}+\mathbf{v}_{\mathrm{O}}\right) \mathbf{t} / 2=\left(2 \mathbf{v}_{\mathrm{O}}+\mathbf{a t}\right) \mathbf{t} / 2 \\
& \Rightarrow \quad \mathbf{x}=\mathbf{v}_{\mathrm{O}} \mathbf{t}+(1 / 2) \mathbf{a t}^{2} \tag{3}
\end{align*}
$$

Equations (1) and (2) can be written in other ways as well. For example, since the plot of $\mathbf{v} v s$. \mathbf{t} is linear, then the average velocity \mathbf{v}_{av} is just $\left(\mathbf{v}+\mathbf{v}_{\mathrm{O}}\right) / 2$. Hence, equation (2) also can be written as

$$
\begin{equation*}
\mathbf{x}=\mathbf{v} \text { av } \mathbf{t} \tag{4}
\end{equation*}
$$

Alternatively, one could invert (1) to find \mathbf{t},

$$
\mathbf{t}=\left(\mathbf{v}-\mathbf{v}_{\mathrm{O}}\right) / \mathbf{a}
$$

and substitute the result into (2) to obtain

$$
\begin{equation*}
x=\left(v^{2}-v_{0}^{2}\right) / 2 a \tag{5}
\end{equation*}
$$

[^0]: ©1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

[^1]: ©1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

