Demonstrations: none
Text. Fishbane Appendix IV
What's important:
-derivative of a polynomial function
-integral of a polynomial function

Slopes

The slope of the tangent to a curve can be found from the slope of the chord bounding the point of interest, in the limit when the length of the chord vanishes:

Finding the slope to the tangent is called "taking the derivative". Suppose that we have a polynomial function $f(\mathbf{x})=\mathbf{x}^{\mathrm{n}}$. Then the slope of the tangent at \mathbf{x} is:

$$
\begin{aligned}
& \begin{array}{c}
\text { slope of } \\
\text { tangent }
\end{array}=\frac{f(\mathbf{x}+\Delta \mathbf{x})-\mathbf{f}(\mathbf{x})}{\Delta \mathbf{x}} \quad \text { as } \Delta \mathbf{x} \rightarrow 0 \\
&=\frac{(\mathbf{x}+\Delta \mathbf{x})^{\mathrm{n}}-\mathbf{x}^{\mathrm{n}}}{\Delta \mathbf{x}} \\
&= \frac{\mathbf{x}^{\mathrm{n}}(1+\Delta \mathbf{x} / \mathbf{x})^{\mathrm{n}}-\mathbf{x}^{\mathrm{n}}}{\Delta \mathbf{x}} \\
& \cong \frac{\mathbf{x}^{\mathrm{n}}(1+\mathrm{n} \cdot \Delta \mathbf{x} / \mathbf{x})-\mathbf{x}^{\mathrm{n}}}{\Delta \mathbf{x}} \quad \text { since } \Delta \mathbf{x} / \mathbf{x} \text { is small } \\
&= \frac{\mathbf{x}^{\mathrm{n}}+\mathrm{n} \cdot \mathbf{x}^{\mathrm{n}} \cdot \Delta \mathbf{x} / \mathbf{x}-\mathbf{x}^{\mathrm{n}}}{\Delta \mathbf{x}} \\
&=\mathrm{n} \cdot x^{\mathrm{n}-1}
\end{aligned}
$$

Thus, the derivative, or the slope of the tangent to the curve, is $n x^{n-1}$. We denote the derivative as $\operatorname{df}(\mathbf{x}) / d \mathbf{x}$, where dx is to be read as one symbol, not the product of a variable \mathbf{d} with a variable \mathbf{x}. Thus,

$$
\frac{d f(x)}{d x}=n \cdot x^{n-1}
$$

If the function is not just $\mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathrm{n}}$, but has an overall multiplicative constant \mathbf{a}, then a repeat of the above calculation shows that

$$
\frac{d\left(a x^{n}\right)}{d x}=\mathbf{a} n \cdot x^{n-1}
$$

The derivatives of some other functions that we use in this course include:
$d \sin \theta / d \theta=\cos \theta$
$d \cos \theta / d \theta=-\sin \theta$
$d \exp (\mathbf{x}) / d \mathbf{x}=\exp (\mathbf{x})$.
Other aspects of taking derivatives, such as the chain rule, are covered in standard calculus texts.

Example Suppose the distance that a car moves as a function of time is given by $\mathbf{L}(\mathbf{t})=20 \mathbf{t}^{2}$, where \mathbf{t} is in [sec] and \mathbf{L} is in [meters]. Find $\mathbf{v}(\mathbf{t})$ and $\mathbf{a}(\mathbf{t})$.

First, note that there are implicit units attached to the " 20 ": it is $20\left[\mathrm{~m} / \mathrm{s}^{2}\right]$, so that 20 $\left[\mathrm{m} / \mathrm{s}^{2}\right] \cdot \mathrm{t}^{2}$ gives an answer in meters.

Then,

$$
\mathbf{v}(\mathbf{t})=\mathrm{d} \mathbf{x}(\mathbf{t}) / \mathrm{dt}=\mathrm{d}\left(20 \mathrm{t}^{2}\right) / \mathrm{dt}=20 \cdot 2 \cdot \mathrm{t}^{2-1}=40 \mathrm{t} \quad[\mathrm{~m} / \mathrm{s}]
$$

and

$$
\mathbf{a}(\mathbf{t})=\mathrm{d} \mathbf{v}(\mathbf{t}) / \mathrm{dt}=\mathrm{d}(40 \mathbf{t}) / \mathrm{dt}=40 \cdot 1 \cdot \mathbf{t}^{1-1}=40 \quad\left[\mathrm{~m} / \mathrm{s}^{2}\right]
$$

Values for \mathbf{x} and \mathbf{v} at any time \mathbf{t} can be found by substituting the desired value of \mathbf{t}.

Areas and integration

In our discussion of kinematics in one dimension, we said that finding the slope to a curve, and taking the area under a curve, were in some sense inverse processes. That is, we said
x ---slope---> v

$$
\text { v ---area---> } \quad \text { x }
$$

or, in derivative language

$$
\text { x ---slope---> dx / dt } \quad \mathrm{dx} / \mathrm{dt} \quad \text {---area---> } \quad \mathbf{x}
$$

or, changing notation to functions of a general variable \mathbf{x} (rather than the kinematics variable of time t)

$$
\mathbf{f}(\mathbf{x}) \quad-- \text {-slope ---> } \quad d f(\mathbf{x}) / \mathrm{d} \mathbf{x} \quad \mathrm{df}(\mathbf{x}) / \mathrm{d} \mathbf{x} \quad \text {---area---> } \quad \mathbf{f}(\mathbf{x})
$$

We want to find an analytical expression for the area under a polynomial function. According to our ideas about slopes and areas, if $d f(\mathbf{x}) / \mathrm{d} \mathbf{x}$ is the slope of the function $f(\mathbf{x})$ (where we use the word "slope" to mean "slope of the tangent to the curve") then the area under the curve $\mathrm{df}(\mathbf{x}) / \mathrm{dx}$ must be $\mathbf{f}(\mathbf{x})$. That is,

$$
\text { [area of } d f(\mathbf{x}) / d \mathbf{d x}]=\mathbf{f}(\mathbf{x})
$$

or, applying this to a polynomial

$$
\text { [area of } \left.n \cdot x^{n-1}\right]=x^{n}
$$

Changing variables so that $\alpha=\mathrm{n}-1$, or $\mathrm{n}=\alpha+1$, then

$$
\left[\text { area of }(\alpha+1) \cdot \mathbf{x}^{\alpha}\right]=\mathbf{x}^{\alpha+1}
$$

or

$$
\text { [area of } \left.\mathbf{x}^{\alpha}\right]=\mathbf{x}^{\alpha+1} /(\alpha+1)
$$

This expression is valid if by the words "area under the curve" we mean area in the range 0 to \mathbf{x} :

However, in general we are interested in the area between specified values of \mathbf{x}_{1} and $\mathbf{x} 2$. This can be found by subtraction:
[area of $\mathbf{f}(\mathbf{x})$ between \mathbf{x}_{1} and \mathbf{x}_{2}] = [area of $\mathbf{f}(\mathbf{x})$ between 0 and \mathbf{x}_{2}] - [area of $\mathbf{f}(\mathbf{x})$ between 0 and \mathbf{x}_{1}]

Graphically, this can be seen as

Thus,
[area of $f(\mathbf{x})$ between \mathbf{x}_{1} and $\left.\mathbf{x}_{2}\right]=\left(\mathbf{x}_{2}{ }^{\alpha+1}-\mathbf{x}_{1}{ }^{\alpha+1}\right) /(\alpha+1)$

We finish off with some notation. The area under the curve is referred to as an integral. We can think of evaluating the area by breaking up the range of \mathbf{x} from \mathbf{x}_{1} to \mathbf{x}_{2} into many small segments i, each having some specified width $d x_{i}$ centred at \mathbf{x}. The approximate area under the curve at each $\mathbf{x}_{\mathbf{i}}$ is $\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}\right) \cdot d \mathbf{x}_{\mathbf{i}}$. Finally, all the small area elements can be summed together to yield the total area:

$$
\text { [area of } \mathbf{f}(\mathbf{x}) \text { between } \mathbf{x}_{1} \text { and } \mathbf{x}_{2} \text {] } \sim \sum_{\mathrm{i}} \mathbf{f}\left(\mathbf{x}_{\mathrm{i}}\right) \cdot \mathrm{d} \mathbf{x}_{\mathbf{i}}
$$

In the limit when the segments become very small, this approximation becomes exact, and the summation $\operatorname{sign} \Sigma_{i}$ is replaced by an integral sign \int.

$$
\text { [area of } f(\mathbf{x}) \text { between } \mathbf{x}_{1} \text { and } \mathbf{x}_{2} \text {] }=\int_{\mathbf{x}_{1}}^{\mathbf{x}_{2}} f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

