
Demonstrations:
•block on plane
•balloon with propellor
•conversion of work to P.E.
Text: Fishbane 6-1, 6-2, 6-3
Problems: 14, 15, 17, 27, 41 from Ch. 6

What’s important:
•work, kinetic energy, potential energy

Work, Kinetic Energy

In previous lectures, we investigated the effect of a force acting over a period of
time.  Newton’s Second Law is sometimes written in the form

F  =  ma  =  m ∆v
∆t

⇒  F ∆t  =  m ∆v  =  ∆(mv)  =  ∆p

impulse Force acting
through time
gives impulse

What about a force acting through a distance?
F ∆x  =  Work  =  W (measured in Joules)

Suppose the force produces a constant acceleration  a .  Then

W ≡ F ∆x  =  F
v2  -  vo 2(

2a ) =  ma
v2  -  vo 2(

2a ) =  1/2 mv2  -  1/2 mvo 2

At this point, work begins to look like an interesting quantity because it depends only
on the end - points (not on the path).  Is it true in general?  Yes, since for a variable
force with no dissipation

W  =
x1

x2
F dx  = madx  = m

dv
dt

dx( )x1

x2

x1

x2

But
dv
dt

=
dv
dx

dx
dt

• (chain rule)
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⇒ W  =
x1

x2

m
dv
dx

dx
dt

• dx• =
x1

x2

mv
dv
dx

dx•

=
v1

v2
mv dv = 1

2 mv
2
2 -

1
2 mv

2
1

(independant of path)

So we see that the work changes the kinetic energy  1/2 mv2  of the particle.  In words,

The work done by an unbalanced force is equal to the change in
the kinetic energy of the object.

As a problem-solving technique, construct a free-body diagram to determine the
unbalanced force.

In three dimensions, we must generalize ∫F dx.  Since force and displacement 
are both vectors, then we expect

W  = F      dx
→→• = Fx  dx  + Fy  dy  + Fz  dz

dot - product

In writing out the dot - product, the direction of  dx  with respect to  F  is taken into
account by the limits on the integral:

xa

xb

F dx

don’t fool around with the sign of 
this when reversing  xa ↔  xb
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Example
Find the work done by the centripetal acceleration for an object executing uniform
circular motion.

•

F dx F  =  m
→ →→→ v2

r2 r

F ⊥ dx
→→

∴ F
→

dx
→

• =  0

It’s no surprise that there is no work done, since there is no change in kinetic energy.

Example
A body moves along the  x - axis  20 m  subject to the forces  F ,  F' ,  F" .  What is 

the change in kinetic energy?

60°

F  =  100 N

Fx  =  100 cos 60°  =  50 N

F'  =  30 N

F"  =  86 N

W  =
20

0
(Fx  -  | F' | ) dx   + (Fy  -  | F" | ) dy   +

0

0

0

0
0  dz

=  (Fx  -  | F' | )      20  +  (Fy  -  | F" | ) dy    0  +  0• •

=  20  (50  -  30)  =  400 N - m  =  400 J

→ →

→ →
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Potential Energy

Consider the situation of an object sliding down a frictionless incline plane.

→

h

L

The force due to gravity is  mg  , and it does work on the block

W  =  F      L

=  mg      L cos θ

=  mgh

→→
•

•

In turn, the work W results in a change in kinetic energy of the block:

mvbottom2 /2  -  mvtop2 /2  =  mgh

Suppose we now raise the block very, very slowly back up to its original position, by
applying a force which just balances the force due to gravity.

Fexternal

N

mg

The total work is zero, since the forces cancel out in the direction of motion.  Similarly,
∆K  =  0  since the object is at rest at the top and bottom.  The work we have done on
the block has not resulted in a change in kinetic energy!

Even though this is a nice consistent picture, we find it unsatisfactory because we are
doing work on the object.  In order to differentiate what we do as external agents, and
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what happens to the system in response to our work, we introduce the idea of potential
energy.  Here

Wdone on  the system = increase in potential energy

Wdone by the system = decrease in potential energy

In some sense, the work we have done is "stored" as potential energy, free to be
converted into kinetic energy at some later time.  The gravitational potential energy is
then   U   =  mgh.  We can now write down a conservation law which states that, in the
absence of friction

∆E  =  0 where E  =  U   +  K (conservation of energy)

U   has replaced  W

or
In the absence of dissipative forces  [heat, friction...]  and of forces

for which it is not possible to define a potential energy, the total
mechanical energy of a system is constant. [dissipative forces  =  friction,
viscosity, etc.]

Example

The work required to separate two bodies attracted by gravity from  r  =  R  to

r  =  ∞ ,  where  r  is the distance of separation, is

R

∞
F dr    =

∞

R
G

M1M2

r2 dr = G M1M2
1

-2 + 1 r-2 + 1
R

∞

= - G M1M2 R∞
1 1( )

=
G M1M2

R

|

This work raises the gravitational potential energy of the objects.  If we want to say

U  (r  =  ∞)  =  0    [i.e. objects at infinite separation have no gravitational PE], then
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U  (R)  =  - G M1M2 
R

because PE of objects decreases 
as objects come together

The  -   sign should not bother us.  The “zero” of the potential energy is not defined
because we can only evaluate the difference in potential energy arising from the work.

→

quantity formula zero

K

W

U

1/2 mv2

F dx
→

•

∆U  obtained 
from W

OK. v  =  0

OK. F or dx  =  0  or   F  ⊥  dx

unknown
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