
Demonstrations:
•collisions on an air track
Text: Fishbane 8-1, 8-2, 8-3, 8-4, 8-5, 8-6
Problems: 12, 28, 38, 51, 58 from Ch. 8

What’s important:
•conservation of momentum
•centre of mass motion
•collisions in one dimension

Momentum, mass and position of a many-particle system

The kinematics that we have introduced so far is that of a single particle, using primary
variables x, v, and a  to describe the position and motion of a particle.  From these
quantities, we obtain the kinetic energy K = mv2/2 and momentum p = mv.  What we
now want to do is describe a system containing many particles, say stars in a galaxy or
molecules in a gas.  We need to find variables like x, v, and a  to characterize the
system as a whole.

Let's start by examining the total momentum of the system Ptot,

Ptot  = ∑
→

i  
pi
→

= ∑
i  

mi vi
→

= ∑
i  

mi 
dri

dt
= ∑

i  
mi ri

→d
dt

This is a vector

→

Note that this is a vector equation, P tot is not the scalar sum of the magnitudes of the
individual momenta.  Multiplying and dividing the right-hand-side by the total mass
Mtot gives

Ptot  =
→

Mtot
i  =  1

N
d        1
dt       Mtot

( ∑ mi ri
→ )

.
This expression resembles P = mv = m dr/dt, where the momentum is Ptot, and the
mass is Mtot.  Hence, the quantity

i  =  1

N

Mtot
( ∑ mi ri

→ )1

represents the effective position of the many-particle system as a whole.  We refer to
this quantity as Rcm, the centre-of-mass position:
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i  =  1

N

Mtot
( ∑ mi ri

→ )1Rcm =
→

What appears in our expression for P tot is the derivative of Rcm, which is the centre-of-
mass velocity:

i  =  1

N

Mtot
( ∑ mi ri

→ )1
Rcm =
→

dt

d
Vcm =
→

dt
d

The centre-of-mass position is the weighted average of the positions of the individual
components of the system, and describes the motion of the system as a whole.

Example: Consider two unequal mass objects, m1 and m2, at positions +r and -r:

m1m2

- r  r
→ →

Rcm   =
1

m1  +  m2
(m1 r  -  m2 r) =

m1  -  m2
m1  +  m2

 r
→→ → →

Two special cases:
Suppose m1 = m2, then Rcm = 0 (i.e., the cm sits at the coordinate origin).

Suppose  m1  >> m2 ,  then m1 + m2 ~ m1 and  Rcm  ~ (m1 / m1) r  =  r.
→ → →

Motion of the cm

What determines the motion of the centre-of-mass?  For a single particle, we
have F = ma , which we can also write as

F = dp / dt.
What happens in a many-body system?  The particles are each subject to individual
forces F i, such that the total force on the system is

Fnet  = ∑
i  

Fi
→

Then by Newton’s Second Law,
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Fnet  = ∑
i  

Fi
→

=
d
dt∑

i  
pi
→

=
d
dt ∑

i  
=

d
dt

pi
→

PTot
→→

or

Fnet  =
d
dt

PTot
→→

But this expression is just like F = dp/dt, and it says that the total momentum obeys a
dynamical equation of the same form as Newton’s second law.  In other words, the
total momentum is constant unless the system is acted upon by a net external force.

 

  We know  PTot  ≡  MTot (dRcm / dt) from above work, so we find that

Fnet  =
→ d

dt
MTot        Rcm( d

dt )→

=
d
dt ( MTot Vcm )

= MTot
dVcm

dt

= MTot acm

→

→

→

Vcm
→

=

acm
→ =

dVcm
→

dt

cm velocity ≡
dRcm

dt

→

Thus,  Rcm ,  Vcm ,  acm  behave just like any kinematic set  r,   v,   a,  except that 

the dynamics is governed by  Fnet .  This is why we don’t need to worry about the 

dynamics of quarks when we talk about the motion of a car.

→ → → → → →
→

Conservation of Momentum

In the previous lecture, we dealt with a fundamental conservation law of Nature:
conservation of energy.  There is another equally important conservation law -
conservation of momentum.  Conservation of momentum has very deep roots in our
understanding of space and arises from the hypothesis that the laws of physics are the
same everywhere in the universe.  Conservation of momentum is a vector equation,
which says that for a system of N  particles, the total momentum

PTot  = ∑
→ N

i  =  1

pi
→
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does not change with time

d PTot
→

dt
=  0

Consider the total momentum of two particles (N   =  2 in the above equation), then

0  =
d PTot

dt
= ( p1  +  p2 ) d

dt

→ →
= F1  +  F2

→ →
→

Thus,  F1  =  - F2 , as expected from Newton’s Third Law.
→ →

Collisions in One Dimension

We now wish to apply the conservation of energy and momentum to the interaction of 
objects.  Consider two objects whose initial velocities and masses are known:

    

m1 m2

v1 v2

After the objects interact (or in this case, collide), we have

m1 m2

v1’ v2’

Can we determine v1' and v2'?  We know that momentum is conserved, so
m1v1 m2v2+ = m1v1’ m2v2’+

take sign into account

If the collision involves no dissipative forces, then we also have conservation of kinetic 
energy

1
2

m1v1 + 1
2

m2v2 =
1
2

m1(v1’) + m2(v2’)
1
2

2 2 2 2

So, in this situation we have two equations and two unknowns, and we can solve for
both v1' and v2' .

Consider a slightly different situation:
m1 m2

vi

m1 m2m1 and 
m2 stick

vf
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We can solve this by conservation of momentum alone:

m1vi + 0   = (m1  +  m2) vf or vf =
m1

m1  +  m2
vi

But conservation of kinetic energy also gives an equation relating vi and vf.  Is this
equation consistent with the results from conservation of momentum?  To answer this
question, we evaluate the kinetic energy before and after the collision as determined
by the conservation of momentum equation:

Ki =
1
2

m1vi
2

Kf =
1
2

(m1  +  m2) vf
2

=
1
2

(m1  +  m2)
m1  +  m2

m1( )
2

vi
2

=
1
2 m1  +  m2

m1( ) m1vi
2

= m1  +  m2

m1
Ki

∴  Kf  <  Ki  and kinetic energy is not conserved.  The difference in kinetic energy
between the initial and final states has gone into heat or sound or whatever.

Rules:
•first apply conservation of momentum (vector, results in 1  to  3  equations).
•then evaluate the kinetic energies (1 equation)

If the collision is elastic, then kinetic energy is conserved.  If kinetic energy is not
conserved, then the collision is inelastic and Kf  <  Ki.  Thus, kinetic energy may not
provide a constraint on the values of the momenta after the collision.  Of course, even if
kinetic energy is not conserved, the total energy, including heat etc., must be
conserved.

2-Body Collisions in Three Dimensions

This situation cannot be solved by conservation laws alone:
•final state has 6 unknowns (3 components of velocity for two particles)
•conservation laws provide 3+1 equations

Need information about the interaction between particles, for example, the potential
energy function.
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