PHYS120 Lecture 24 - Circular motion with variable speed

Demonstrations: •bike wheel, rotating stool *Text*. Fishbane 9-2 Problems: 7, 8 from Ch. 9

What's important: •angular acceleration •angular velocity and acceleration as vectors

Circular Motion with Variable Speed

Continuing with circular motion, let us consider the case where ω is not a constant. This means that there are two components to the acceleration, a centripetal component towards the centre and a tangential component along the edge:

Just as we define linear acceleration in terms of a change in velocity, we can define an angular acceleration by a change in angular velocity

.

angular acceleration
$$\alpha = \frac{\text{change in } \omega}{\text{change in time}}$$

= $\frac{\omega}{t}$

Since $v = \omega r$

Thus, we have the parallel equations (for constant radius)

arc length	$= \theta r$
speed	$= \mathbf{v} = \omega r$
tangential acceleration	$= \mathbf{a}_t = \alpha r$

Thus, we would expect to find relations amongst θ , ω , α and *t* just as with *d*, *v*, *a* and *t*.

Suppose we have uniform angular acceleration

The area of the angular acceleration graph gives a linear time dependence for the angular velocity:

$$\omega_{\rm f} = \omega_{\rm O} + \alpha t$$
 --> $\alpha t = \omega_{\rm f} - \omega_{\rm O}$

The area of the angular velocity graph gives a quadratic time dependence for the angle:

$$\theta = _{0}\mathbf{t} + \frac{1}{2} (- _{0}) \mathbf{t}$$
$$= _{0}\mathbf{t} + \frac{1}{2} \mathbf{t}^{2}$$

Finally, an alternate expression for the angle which does not explicitly show the time dependence can be found by rearranging the above expressions:

$$\theta = \frac{\frac{2}{f} - \frac{2}{0}}{2}$$

Example

A carousel, starting from rest, attains a frequency of one revolution every 5 sec after 10 sec. Assuming uniform acceleration, what is the angular acceleration? If the carousel is 10 m in diameter, what is a_t after 10 sec?

After 10 sec,
$$\mathbf{f} = \frac{1}{5} \operatorname{sec}^{-1} \left(\mathbf{f} = \frac{1}{T}\right)$$

= 2 $\mathbf{f} = \frac{2}{5} \operatorname{rad}/\operatorname{sec}$

Solution

We can use = 0 + t, with

$$_{0} = 0$$
 and $= \frac{2}{5}$ at t = 10 sec

 $[1 rev every 5 seconds -> f = 1/5 s^{-1}]$

to give the angular acceleration

$$=\frac{2}{5}\cdot\frac{1}{10}=\frac{1}{25}$$
 radians / sec²

The tangential acceleration, \mathbf{a}_t , which is time-independent (if α is constant), can be found from the angular acceleration:

$$\mathbf{a}_{t} = \mathbf{r} = \frac{1}{25} \cdot 5 = \frac{1}{5} = 0.63 \text{ m/s}^{2}$$

NOTE: even though \mathbf{a}_t is constant, \mathbf{a}_{tot} is not constant, since \mathbf{a}_c changes with \mathbf{v} as the carousel accelerates.

Vectors

Do angular analogues of **x**, **v**, **a** exist for θ , ω , α ? I.e., are , α actually vectors? The answer is yes, as can be seen from the demonstrations.

Demos: use bike wheel, with prof seated on rotating stool, to show that has a direction

For example, if the angular velocity of the wheel increases, then the length of the vector must increase

The increase in ω results from an angular acceleration $\$. The direction of the change in ω must be the same as the direction of the angular acceleration $\$:

An angular acceleration can change the direction of ω as well, with the change in direction of ω pointing in the same direction as :

If turns, but does not change in magnitude, then α is not zero.

