Demonstrations:
-bike wheel, rotating stool
Text. Fishbane 9-2
Problems: 7, 8 from Ch. 9
What's important:

- angular acceleration
-angular velocity and acceleration as vectors

Circular Motion with Variable Speed

Continuing with circular motion, let us consider the case where ω is not a constant. This means that there are two components to the acceleration, a centripetal component towards the centre and a tangential component along the edge:

Just as we define linear acceleration in terms of a change in velocity, we can define an angular acceleration α by a change in angular velocity

$$
\begin{aligned}
\text { angular acceleration } \equiv \alpha & =\frac{\text { change in } \omega}{\text { change in time }} \\
& =\frac{\Delta \omega}{\Delta t}
\end{aligned}
$$

Since $\quad v=\omega r$

$$
\begin{aligned}
\Rightarrow \quad \alpha & =\frac{\Delta\left(\frac{v}{r}\right)}{\Delta t} \\
& =\frac{1}{r}\left(\frac{\Delta v}{\Delta t}\right) \rightarrow \begin{array}{l}
\text { rate of change of speed. } \\
\therefore \text { must be tangential acceleration } a_{\mathrm{t}}
\end{array} \\
\Rightarrow \quad \alpha & =\frac{1}{r} a_{\mathrm{t}} \\
\text { or } \quad a_{\mathrm{t}} & =\alpha r
\end{aligned}
$$

Thus, we have the parallel equations (for constant radius)

$$
\begin{aligned}
\text { arc length } & =\theta r \\
\text { speed } & =|\mathbf{v}|=\omega r \\
\text { tangential acceleration } & =\left|\mathbf{a}_{\mathrm{t}}\right|=\alpha r
\end{aligned}
$$

Thus, we would expect to find relations amongst θ, ω, α and t just as with d, v, a and t.

Suppose we have uniform angular acceleration

The area of the angular acceleration graph gives a linear time dependence for the angular velocity:

$$
\omega_{f}=\omega_{\mathrm{O}}+\alpha t \quad-->\quad \alpha t=\omega_{f}-\omega_{\mathrm{O}}
$$

The area of the angular velocity graph gives a quadratic time dependence for the angle:

$$
\begin{aligned}
\theta & =\omega_{0} t+\frac{1}{2}\left(\omega-\omega_{0}\right) t \\
& =\omega_{0} t+\frac{1}{2} \alpha t^{2}
\end{aligned}
$$

Finally, an alternate expression for the angle which does not explicitly show the time dependence can be found by rearranging the above expressions:

$$
\theta=\frac{\omega_{f}^{2}-\omega_{0}^{2}}{2 \alpha}
$$

Example

A carousel, starting from rest, attains a frequency of one revolution every 5 sec after 10 sec . Assuming uniform acceleration, what is the angular acceleration? If the carousel is 10 m in diameter, what is \mathbf{a}_{t} after 10 sec ?

$$
\begin{array}{lll}
\text { After } 10 \mathrm{sec}, & \mathbf{f}=\frac{1}{5} \quad \sec -1 \quad\left(\mathbf{f}=\frac{1}{\mathrm{~T}}\right) \\
& \Rightarrow \quad \omega=2 \pi \mathbf{f}=\frac{2 \pi}{5} \quad \mathrm{rad} / \mathrm{sec}
\end{array}
$$

Solution

We can use $\omega=\omega_{0}+\alpha \mathbf{t}$, with

$$
\omega_{0}=0 \text { and } \omega=\frac{2 \pi}{5} \text { at } t=10 \mathrm{sec}
$$

$$
\text { [} 1 \text { rev every } 5 \text { seconds }->\mathbf{f}=1 / 5 \mathrm{~s}^{-1} \text {] }
$$

to give the angular acceleration
$\Rightarrow \quad \alpha=\frac{2 \pi}{5} \cdot \frac{1}{10}=\frac{\pi}{25}$ radians $/ \sec ^{2}$

The tangential acceleration, \mathbf{a}_{t}, which is time-independent (if α is constant), can be found from the angular acceleration:

$$
\mathbf{a}_{\mathrm{t}}=\alpha \mathbf{r}=\frac{\pi}{25} \cdot 5=\frac{\pi}{5}=0.63 \mathrm{~m} / \mathrm{s}^{2}
$$

NOTE: even though \mathbf{a}_{t} is constant, $\mathbf{a}_{\text {tot }}$ is not constant, since \mathbf{a}_{c} changes with \mathbf{v} as the carousel accelerates.

Vectors

Do angular analogues of $\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{a}}$ exist for θ, ω, α ? I.e., are ω, α actually vectors? The answer is yes, as can be seen from the demonstrations.

Demos: use bike wheel, with prof seated on rotating stool, to show that $\vec{\omega}$ has a direction

For example, if the angular velocity of the wheel increases, then the length of the ω vector must increase

The increase in ω results from an angular acceleration α. The direction of the change in ω must be the same as the direction of the angular acceleration α :

$$
k \vec{\alpha}
$$

An angular acceleration α can change the direction of ω as well, with the change in direction of ω pointing in the same direction as α :

If $\overrightarrow{\boldsymbol{\omega}}$ turns, but does not change in magnitude, then $\vec{\alpha}$ is not zero.

