Demonstrations: none
Text. Fishbane 9-4, 9-5, 9-6, 10-1, 10-2, 10-3
Problems: 38, 42, 43 from Ch. 9; 18, 20 from Ch. 10
What's important:
-angular momentum and torque
-summary of angular kinematics and dynamics
-links between angular and linear equations

Vectors for $\vec{\omega}, \vec{\alpha}$:
We have said for circular motion that $\mathbf{v}=\boldsymbol{\omega} \mathbf{r}$. In fact, in vector form $\overrightarrow{\mathbf{v}}=\overrightarrow{\boldsymbol{\omega}} \times \overrightarrow{\mathbf{r}}$.

(use right hand rule on
$\vec{\omega} \times \overrightarrow{\mathbf{r}}$ to find how $\overrightarrow{\mathbf{v}}$ points.)

NOTE: the cross product cannot be inverted to read $\omega=\mathbf{v} / \mathbf{r}$.

The link between α and \mathbf{a}_{t} is found by expressing the total acceleration vector in terms of its tangential and centripetal components:

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}_{\mathrm{t}}+\overrightarrow{\mathbf{a}}_{\mathrm{c}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}=\frac{\mathrm{d} \overrightarrow{\boldsymbol{\omega}}}{\mathrm{dt}} \times \overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{\omega}} \times \frac{\mathrm{d} \overrightarrow{\mathbf{r}}}{\mathrm{dt}} \\
& \vec{\alpha} \times \overrightarrow{\mathbf{r}} \equiv \overrightarrow{\mathbf{a}_{\mathrm{t}}} \quad \square \overrightarrow{\boldsymbol{\omega}} \times \overrightarrow{\mathbf{v}} \quad \therefore \overrightarrow{\mathbf{a}_{c}}=\overrightarrow{\boldsymbol{\omega}} \times \overrightarrow{\mathbf{v}}
\end{aligned}
$$

must be $\overrightarrow{\mathbf{a}_{\mathrm{t}}}$ since it
is perpendicular to $\overrightarrow{\mathbf{r}}$.
must be $\overrightarrow{\mathbf{a}_{c}}$ since it
is perpendicular to $\overrightarrow{\mathbf{v}}$.

To confirm the orientation of the tangential and centripetal acceleration, recall

Thus, we have

$$
\vec{\alpha} \times \overrightarrow{\mathbf{r}} \equiv \overrightarrow{\mathbf{a}}_{\mathrm{t}}
$$

Angular Momentum

There are angular analogues of momentum and force. First, angular momentum \vec{L} is $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}$.

i) Note that we can also write this as

$$
\mathbf{L}=\mathbf{r} \mathbf{p} \sin \theta=(\mathbf{r} \sin \theta) \mathbf{p}=\mathbf{r}_{\perp} \mathbf{p}
$$

ii) Note, if $\overrightarrow{\mathbf{r}}$ is parallel to $\overrightarrow{\mathbf{p}}$, then the angular momentum vanishes since $\theta=0$.
iii) Note: $\overrightarrow{\mathrm{L}}$ is defined with respect to some point in space.

Moment of inertia

The angular momentum \mathbf{L} is related to the angular velocity ω through the moment of inertia. Consider the motion of a single mass m around a point:

Now,

$$
\begin{aligned}
\mathbf{L} & =\mathbf{r p} \\
& =\mathbf{r} \mathbf{m v} \\
& =\mathbf{r} \mathbf{m} \omega \mathbf{r} \\
& =\left(\mathbf{m r}^{2}\right) \omega
\end{aligned}
$$

This is called the moment of inertia / or rotational inertia.

$$
\therefore \overrightarrow{\mathrm{L}}=\mathrm{I} \vec{\omega} \text { just like } \overrightarrow{\mathrm{p}}=\mathrm{m} \overrightarrow{\mathrm{v}}
$$

Torque

In linear kinematics, force is the rate of change of momentum: $\mathbf{F}=m \mathrm{dp} / \mathrm{d} t$. In angular motion, torque is the rate of change of angular momentum:

$$
\vec{\tau}=\frac{\mathrm{d} \overrightarrow{\mathrm{~L}}}{\mathrm{dt}}=\frac{\mathrm{d} \vec{\omega}}{\mathrm{dt}}=\mathrm{I} \frac{\mathrm{~d} \vec{\omega}}{\mathrm{dt}}=\mid \vec{\alpha}
$$

To link $\vec{\tau}$ to \vec{F}, evaluate the derivative in full:

$$
\begin{gathered}
\vec{\tau}=\frac{d \vec{L}}{d t}=\frac{d \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}}{d t}=\left(\frac{\mathrm{dt}}{\frac{(\overrightarrow{\mathbf{r}}}{d t}}\right) \times \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{r}} \times \frac{\mathrm{d} \overrightarrow{\mathbf{p}}}{\mathrm{dt}}=0+\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathrm{F}} \\
\overrightarrow{\mathbf{m v}}
\end{gathered}
$$

$$
\therefore \vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathrm{F}} \quad \text { or } \quad \tau=\mathbf{r}_{\perp} \mathrm{F}
$$

The maximum torque occurs when \mathbf{r} is perpendicular to \mathbf{F}. If \mathbf{r} is parallel to \mathbf{F}, then there is no torque (the force still acts, but there does not change the angular momentum):

no torque

Summary

Linear
Links
$\overrightarrow{\mathbf{v}}=\frac{\mathrm{d} \overrightarrow{\mathbf{x}}}{\mathrm{dt}}$
$\vec{v}=\vec{\omega} \times \vec{r}$
$\vec{\omega}=\frac{d \theta}{d t}$
$\overrightarrow{\mathbf{a}}=\frac{\mathrm{d} \overrightarrow{\mathbf{v}}}{\mathrm{dt}}$
$\overrightarrow{\mathbf{a}_{\mathrm{t}}}=\vec{\alpha} \times \overrightarrow{\mathbf{r}}$
$\vec{\alpha}=\frac{\mathrm{d} \vec{\omega}}{\mathrm{dt}}$
$\vec{p}=m \vec{v}$
$\vec{L}=\vec{r} \times \vec{p}$
$\overrightarrow{\mathrm{L}}=\mathrm{I} \overrightarrow{\boldsymbol{U}}$ moment of inertia
$\vec{F}=\frac{d \overrightarrow{\mathbf{p}}}{\mathrm{dt}}$
$\vec{\tau}=\vec{r} \times \vec{F}$
$\vec{\tau}=\frac{\mathrm{d} \overrightarrow{\mathrm{L}}}{\mathrm{dt}}$

Example: Motion of a comet around the sun

$$
\begin{array}{ll}
\vec{r} \times \vec{F}=0, & \text { since they are parallel. } \\
\therefore \quad \frac{d \mathrm{~L}}{\mathrm{dt}}=0 & \text { or } L \text { is a constant. }
\end{array}
$$

Note that the linear momentum p changes in magnitude during the orbit, even though the angular momentum is constant.

[^0]
[^0]: © 1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

