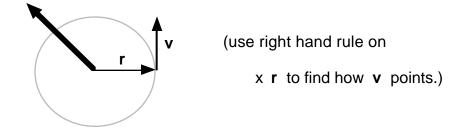
PHYS120 Lecture 25 - Angular momentum and torque

Demonstrations: none *Text.* Fishbane 9-4, 9-5, 9-6, 10-1, 10-2, 10-3 *Problems*: 38, 42, 43 from Ch. 9; 18, 20 from Ch. 10

What's important: •angular momentum and torque •summary of angular kinematics and dynamics •links between angular and linear equations

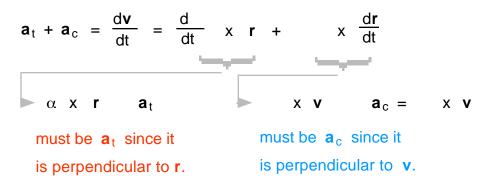
Vectors for $, \alpha :$

We have said for circular motion that $\mathbf{v} = \mathbf{r}$. In fact, in vector form $\mathbf{v} = \mathbf{x} \mathbf{r}$.



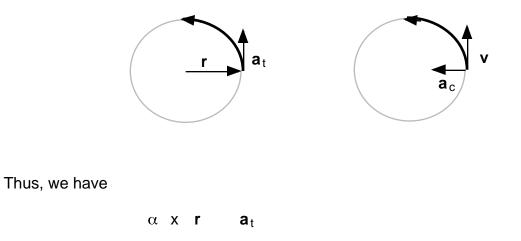
NOTE: the cross product cannot be inverted to read $\omega = \mathbf{v} / \mathbf{r}$.

The link between α and **a**_t is found by expressing the total acceleration vector in terms of its tangential and centripetal components:



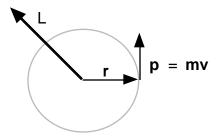
1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

To confirm the orientation of the tangential and centripetal acceleration, recall



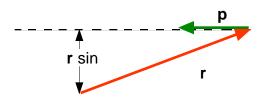
Angular Momentum

There are angular analogues of momentum and force. First, angular momentum L is $\mathbf{r} \times \mathbf{p}$.



i) Note that we can also write this as

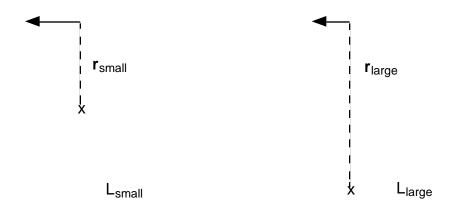
 $L = \mathbf{r} \mathbf{p} \sin = (\mathbf{r} \sin) \mathbf{p} = \mathbf{r} \mathbf{p}$



1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

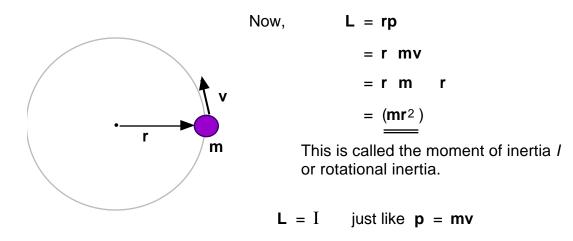
ii) Note, if **r** is parallel to **p**, then the angular momentum vanishes since = 0.

iii) Note: L is defined with respect to some point in space.



Moment of inertia

The angular momentum **L** is related to the angular velocity Ω through the moment of inertia. Consider the motion of a single mass **m** around a point:



1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

Torque

In linear kinematics, force is the rate of change of momentum: $\mathbf{F} = m \, d\mathbf{p} / dt$. In angular motion, **torque** is the rate of change of **angular momentum**:

$$= \frac{dL}{dt} = \frac{dI}{dt} = I \frac{d}{dt} = I$$

To link to F, evaluate the derivative in full:

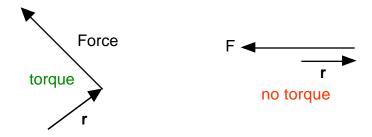
$$= \frac{dL}{dt} = \frac{d \mathbf{r} \times \mathbf{p}}{dt} = \left(\frac{d\mathbf{r}}{dt}\right) \times \mathbf{p} + \mathbf{r} \times \frac{d\mathbf{p}}{dt} = 0 + \mathbf{r} \times F$$

$$= \frac{\mathbf{v}}{\mathbf{v}} \mathbf{m} \mathbf{v}$$

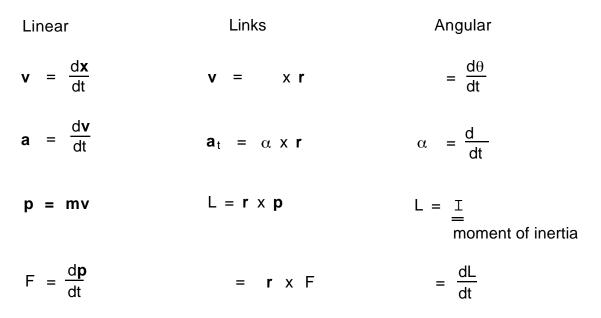
$$\mathbf{v} \times \mathbf{v} \text{ is a cross product of a vector with itself and hence vanishes.}$$

$$= \mathbf{r} \times \mathbf{F}$$
 or $= \mathbf{r} \mathbf{F}$

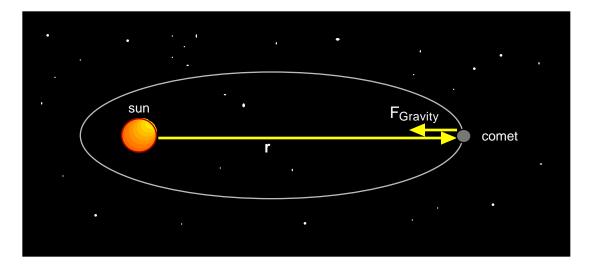
The maximum torque occurs when \mathbf{r} is perpendicular to \mathbf{F} . If \mathbf{r} is parallel to \mathbf{F} , then there is no torque (the force still acts, but there does not change the angular momentum):



Summary



Example: Motion of a comet around the sun



r x F = 0, since they are parallel. $\frac{dL}{dt} = 0 \quad \text{or } L \text{ is a constant.}$

Note that the linear momentum ${\bf p}$ changes in magnitude during the orbit, even though the angular momentum is constant.

1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.