Demonstrations: none
Text. Fishbane 11-1, 11-2, 11-3
Problems: 11, 15, 22, 28, 41 from Ch. 11
What's important:
-conditions for no rotation and no translation

## Statics

In linear kinematics, we said that for an object to be stationary, its acceleration a must vanish. Applying Newton's Second Law:

$$
\vec{F}=\mathbf{m a}
$$

we find that the condition for no translation of the object is

$$
\sum_{i} \vec{F}_{i}=0 \quad \begin{aligned}
& \text { for static equilibrium } \\
& \text { (up to } 3 \text { independent equations). }
\end{aligned}
$$

Newton's Second Law for angular motion is

$$
\vec{\tau}=\mathrm{I} \vec{\alpha}
$$

so that the condition for no angular rotation of the object is

$$
\sum_{i} \overrightarrow{\tau_{i}}=0 \quad \begin{aligned}
& \text { for static equilibrium } \\
& \text { (up to } 3 \text { equations) }
\end{aligned}
$$

Note that if the object is not rotating, then the net torque around every axis that you choose is zero.

## Example 1

A block is pushed against a fixed point $\mathbf{A}$ :


A

Find the maximum force before the block rotates.

First, construct a free-body diagram. In addition to the applied force $\mathbf{F}$, there is a normal force $\mathbf{N}$ opposing the weight $\mathbf{m g}$, and there is a reaction force $\mathbf{f}$ opposing the applied force $\mathbf{F}$ :


Note, $\overrightarrow{\mathbf{N}}$ and $\overrightarrow{\mathbf{f}}$ act at point $\mathbf{A}$ when block is about to rotate over stopper.

We can use linear conditions

$$
\sum_{i} \overrightarrow{f_{i}}=0
$$

to provide two conditions on $\overrightarrow{\mathbf{N}}$ and $\overrightarrow{\mathbf{f}}$.

$$
\begin{array}{ll}
\mathbf{x} \text { - direction: } & \overrightarrow{\mathbf{f}}=-\overrightarrow{\mathbf{F}} \\
\mathbf{z} \text { - direction: } & \overrightarrow{\mathbf{N}}=-\mathbf{m g}=-\overrightarrow{\mathbf{w}}
\end{array}
$$

We impose the constraint of no rotational motion by saying that there should be no net torque:

$$
\sum_{i} \overrightarrow{\tau_{i}}=0
$$

hF
out of plane

$\Rightarrow \quad F=w d / h$

## Example 2

A uniform plank of length 6 m and weight 320 N is supported on two trestles, each 1 m from an end of the plank. How close to the end can a man of weight 800 N walk before the plank tips?


Forces in $\mathbf{z}$ - direction for static equilibrium

$$
\mathbf{N}_{1}+\mathbf{N}_{2}=320+800=1120
$$

But when the plank is just about to rotate, $\mathbf{N}_{1}=0$

$$
\Rightarrow \mathbf{N}_{2}=1120 \mathrm{~N} \text { at rotation. }
$$

Torque equation can be applied at any axis. Usually one looks for the axis of rotation, or finds a convenient axis where many $\tau$ 's vanish.

Consider the torque about position (2):

$$
\begin{aligned}
\tau_{\text {net }}= & \underline{\underline{-\mathbf{N}_{1}}(4)}+320(2)+\underline{\underline{=0}} \\
& =0 \\
= & 640-800+800 \mathbf{x}=-160+800 \mathbf{x}
\end{aligned}
$$

When the torque vanishes

$$
\begin{array}{r}
-160+800 x=0 \\
\text { or } \quad x=\frac{160}{800}=0.2 \mathrm{~m}
\end{array}
$$

## Example 3

A man is climbing a massless ladder leaning against a frictionless wall. If the coefficient of friction between the ladder and the floor is $\mu_{\mathbf{s}}$, how far up the ladder can the man climb before the ladder slips?

© 1996 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

| Forces in $\mathbf{x}$ - direction: | $\mathbf{f}=\mathbf{N}_{2}$ | (magnitude) | (1) |
| :--- | :--- | :--- | :--- |
| Forces in $\mathbf{z}$-direction: | $\mathbf{N}_{1}=\mathbf{m g}$ | (magnitude) | (2) |
| Friction law: | $\mathbf{f}=\boldsymbol{\mu} \mathbf{N}_{1}$ |  | (3) |

Rotation condition: $\quad \mathbf{m g} \mathbf{s} \cos \theta=\mathbf{N}_{2} \mathbf{L} \sin \theta$ (4)
(1) + (2) $\Rightarrow \mu \mathbf{N}_{1}=\mathbf{N}_{2}$
(1) + (2) + (3) $\Rightarrow \mathbf{N}_{2}=\mu \mathbf{m g}$
(2) + (5) $\Rightarrow \mu(\mathbf{m g})=\mathbf{N}_{2}$
(4) + (6) $\Rightarrow \mathbf{m g s} \cos \theta=\mu \mathbf{m g} L \sin \theta$

$$
\begin{aligned}
& \text { or } \quad \mathbf{s}=\mu \mathbf{L} \frac{\sin \theta}{\cos \theta} \\
& \text { or } \left.\quad \frac{\mathbf{s}}{\mathbf{L}}=\mu \tan \theta \quad \text { [Independent of } \mathbf{m}!\right]
\end{aligned}
$$

Hence, for the person to climb the ladder all the way to $\mathbf{s}=\mathbf{L}$,

$$
\begin{aligned}
\tan \theta & \geq \frac{1}{\mu} \\
\text { If } \mu=0.6 & \Rightarrow \theta \simeq 1 \mathrm{rad} \simeq 57^{\circ}
\end{aligned}
$$



Variation $1: \mathbf{m}_{\text {ladder }} \neq 0, \mu=0$ at wall.

$$
\mathbf{f}=\mathbf{N}_{2} \quad \mathbf{N}_{1}=\left(\mathbf{m}_{\text {person }}+\mathbf{m}_{\text {ladder }}\right) \mathbf{g} \quad \mathbf{f}=\mu \mathbf{N}_{1}
$$

$\Rightarrow$ Rotation condition is

$$
\mathbf{m}_{\text {person }} \mathbf{g s} \cos \theta+\mathbf{m}_{\text {ladder }} \mathbf{g} \frac{\mathbf{L}}{2} \cos \theta=\mathbf{N}_{2} \mathbf{L} \sin \theta
$$

But $\quad \mathbf{N}_{2}=\mathbf{f}=\mu \mathbf{N}_{1}=\mu\left(\mathbf{m}_{\mathrm{p}}+\mathbf{m}_{\llcorner }\right) \mathbf{g}$

$$
\begin{aligned}
& \Rightarrow \quad \mathbf{g} \cos \theta\left(\mathbf{m}_{p} \mathbf{s}+\mathbf{m}_{L} \frac{\mathbf{L}}{2}\right)=\mu\left(\mathbf{m}_{p}+\mathbf{m}_{L}\right) \mathbf{g} \mathbf{L} \sin \theta \\
& \Rightarrow \quad \mathbf{m}_{p} \mathbf{s}+\mathbf{m}_{\mathrm{L}} \frac{\mathbf{L}}{2}=\mu\left(\mathbf{m}_{p}+\mathbf{m}_{L}\right) \mathbf{L} \tan \theta \\
& \\
& \quad \mathbf{m}_{p} \mathbf{s} \mathbf{L}+\frac{\mathbf{m}_{L}}{2}=\mu\left(\mathbf{m}_{p}+\mathbf{m}_{L}\right) \tan \theta \\
& \Rightarrow \quad \frac{\mathbf{s}}{\mathbf{L}}=\mu \tan \theta\left(1+\frac{\mathbf{m}_{L}}{\mathbf{m}_{p}}\right)-\frac{\mathbf{m}_{L}}{2 \mathbf{m}_{p}}
\end{aligned}
$$

Variation 2: $\mathbf{m}_{\text {Ladder }}=0, \mu \neq 0$ at wall

$$
\begin{aligned}
& \mathbf{f}_{1}=\mathbf{N}_{2} \quad \mathbf{N}_{1}=\mathbf{m g}-\mathbf{f}_{2} \quad \mathbf{f}_{1}=\mu \mathbf{N}_{1} \quad \mathbf{f}_{2}=\mu \mathbf{N}_{2} \\
& \text { (1) } \\
& \text { (2) } \\
& \text { (3) } \\
& \text { (1) + (3) } \Rightarrow \quad \mathbf{N}_{2}=\mu \mathbf{N}_{1} \\
& \text { (2) + (4) } \Rightarrow \quad \mathbf{N}_{1}=\mathbf{m g}-\mu \mathbf{N}_{2} \\
& \text { (5) + (6) } \Rightarrow \mathbf{N}_{1}=\mathbf{m g}-\mu^{2} \mathbf{N}_{1} \\
& \mathbf{N}_{1}=\frac{\mathbf{m g}}{1+\mu^{2}} \\
& \mathbf{N}_{2}=\frac{\mu \mathbf{m g}}{1+\mu^{2}}
\end{aligned}
$$

Torque: $\mathbf{m g s} \cos \theta=\mathbf{N}_{2} \mathbf{L} \sin \theta+\mathbf{f}_{2} \mathbf{L} \cos \theta$

$$
\begin{gathered}
=\frac{\mu \mathbf{m g}}{1+\mu^{2}} \mathbf{L} \sin \theta+\frac{\mu^{2} \mathbf{m g}}{1+\mu^{2}} \mathbf{L} \cos \theta \\
\mathbf{s}=\frac{\mu}{1+\mu^{2}} \mathbf{L} \tan \theta+\frac{\mu^{2}}{1+\mu^{2}} \mathbf{L} \\
\frac{\mathbf{s}}{\mathbf{L}}=\frac{\mu}{1+\mu^{2}}(\tan \theta+\mu)=\frac{\mu_{1}}{1+\mu_{1} \mu_{2}}\left(\tan \theta+\mu_{2}\right) \\
\left\{\begin{array}{l}
\text { 1. Even if } \theta=0 \quad \frac{\mathbf{s}}{\mathbf{L}}=\frac{\mu^{2}}{1+\mu^{2}} \\
\text { 2. If } \frac{\mathbf{s}}{\mathbf{L}}=1, \quad \frac{1+\mu^{2}}{\mu}=\tan \theta+\mu \\
\tan \theta=\frac{1}{\mu} \text { as before. }
\end{array}\right.
\end{gathered}
$$

