Demonstrations:

-mass on a spring, pendulum, stop clock
Text. Fishbane 13-1, 13-3, 13-4, 13-5
Problems: 13, 15, 43, 45, 49 from Ch. 13
What's important:
-simple harmonic motion

Oscillatory Motion

We introduced Hooke's Law as an example of a force that increases linearly with the displacement from equilibrium \mathbf{x} :

The motion which an object executes under Hooke's Law as it oscillates back and forth is referred to as simple harmonic motion (or SHM). We want to find the displacement \mathbf{x} as a function of time $\mathbf{x}(t)$. From Newton's Law $\mathbf{F}=m \mathbf{a}$, we have

But

$$
m \mathbf{a}(\mathbf{t})=-k \mathbf{x}(\mathbf{t})
$$

$$
\mathbf{a}=\mathrm{d}^{2} \mathbf{x} / \mathrm{d} t^{2}
$$

so that

$$
\begin{equation*}
\mathrm{d}^{2} \mathbf{x} / \mathrm{d} t^{2}=-(k / m) \mathbf{x} \tag{1}
\end{equation*}
$$

Equation (1) is called a differential equation. It does not specify the form for $\mathbf{x}(t)$, in the sense that $\mathbf{x}(t)$ is on the left hand side of the equaiton, and a function is on the right hand side. Instead, it relates $\mathbf{x}(t)$ to its second derivative. This relation turns out to be sufficient to determine the functional form of $\mathbf{x}(t)$, although it is not sufficient to determine some of the constants in the function.

Clearly, functions like $x(t)=c t^{n}$ or $x(t)=c \exp (-b t)$ do not satisfy Eq. (1), as can be seen by explicit substitution. Physically, these functions decay to zero at large t, whereas what we want is a solution that oscillates. Let's try a trig function, which we
know is oscillatory

$$
\mathbf{x}(t)=A \sin \omega t
$$

The proof is by direct substitution. Taking the first derivative:

$$
\begin{gathered}
\mathrm{d} x / \mathrm{d} t=\mathrm{d}[A \sin \omega t] / \mathrm{d} t=A \cdot \mathrm{~d}(\omega t) / \mathrm{d} t \cdot \mathrm{~d} \sin q / \mathrm{d} q \quad(\text { where } q=\omega t) \\
=A \omega \cdot \cos q=A \omega \cos \omega t .
\end{gathered}
$$

Taking the second derivative:

$$
\begin{gathered}
\mathrm{d}^{2} x / \mathrm{d} t^{2}=\mathrm{d}[A \omega \cos \omega t] / \mathrm{d} t=A \omega \cdot \mathrm{~d}(\omega t) / \mathrm{d} t \cdot \mathrm{~d} \cos q / \mathrm{d} q \quad(\text { where } q=\omega t) \\
=A \omega \omega \cdot[-\sin q]=-A \omega^{2} \cdot \sin \omega t .
\end{gathered}
$$

Replacing $A \sin \omega t$. with $x(t)$, we have just shown that

$$
\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\omega^{2} x(t)
$$

This is the form required for simple harmonic motion, and we have now established that the angular frequency ω is given by

$$
\omega^{2}=k / m \quad \text { or } \quad \omega=(k / m)^{1 / 2}
$$

A graph of $\mathbf{x}(\mathbf{t})$ looks approximately like (my drawing routines unfortunately don't produce trig functions!):

Substituting $\omega=(k / m)^{1 / 2}$ into the expression for the period T gives

$$
T=2 \pi(m / k)^{1 / 2} \quad \text { or } \quad f=(1 / 2 \pi)(k / m)^{1 / 2} \quad(f=1 / T=\text { frequency })
$$

The form $\mathbf{x}(t)=A \sin \omega t$ satisfies $\mathbf{x}=0$ at $t=0$. A more general solution, which allows \mathbf{x} to be non-zero at $t=0$ is $\mathbf{x}(t)=A \sin (\omega t+\delta)$, where δ is a so-called phase angle. If we wish to impose $x=A$ at $t=0$, then we can use $\mathbf{x}(t)=A \cos \omega t$.

Energy Conservation in SHM

Let's now calculate the kinetic and potential energy in simple harmonic motion. The potential energy is easy:

$$
U=\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2} \sin ^{2} \omega t
$$

For the kinetic energy, we need $\mathbf{v}(\mathbf{t})$, which we have obtained above

$$
\mathbf{v}(t)=\mathrm{d} \mathbf{x}(t) / \mathrm{d} t=A \omega \cos \omega t
$$

Hence $\quad K=m v^{2} / 2=m[A \omega \cos \omega t]^{2} / 2=m A^{2} \omega^{2} \cos ^{2} \omega t / 2$.
Adding the kinetic and potential energies gives

$$
\begin{aligned}
E=K+U= & m A^{2} \omega^{2} \cos ^{2} \omega t / 2+k A^{2} \sin ^{2} \omega t / 2 \\
& =m A^{2}[k / m] \cos ^{2} \omega t / 2+k A^{2} \sin ^{2} \omega t / 2 \\
& =k A^{2}\left[\cos ^{2} \omega t+\sin ^{2} \omega t\right] / 2 \\
& =k A^{2} / 2 .
\end{aligned}
$$

Since k and A are both constant, the sum $K+U$ is also a constant, and energy is conserved in the motion.

Simple Pendulum

Consider a mass m suspended by a massless string of length ℓ. If we move the mass away from its equilibrium position, then it is subject to a restoring force

In a coordinate system which has one axis along the string,

$$
\begin{array}{ll}
\text { tension in string }=m g \cos \theta & \text { balanced } \\
F_{\mathrm{R}}=-m g \sin \theta & \text { unbalanced }
\end{array}
$$

But $\sin \theta=\frac{x}{\ell}$, so

$$
F_{\mathrm{R}}=-m g \frac{x}{\ell}
$$

For θ small, F_{R} is roughly horizontal, so

$$
F_{\mathrm{R}}=m a=-m g \frac{x}{\ell} \quad \text { or } \quad a=-\frac{g}{\ell} x \quad \begin{aligned}
& (\overrightarrow{\mathbf{a}} \text { is in opposite } \\
& \text { direction to } \mathbf{x})
\end{aligned}
$$

PHYS 120 Lecture 30-Oscillatory Motion and Pendula
The relation between a and x is that of simple harmonic motion, so
$\omega=\sqrt{\frac{g}{\ell}}$
or $\quad T=2 \pi \sqrt{\frac{\ell}{g}}$

Note: T does not depend on m or A.

Example

What is the period of a pendulum 1.00 m long?
Solution:

$$
T=2 \pi \sqrt{\frac{1.00}{9.81}}=2.00_{6} \mathrm{sec}
$$

A pendulum with a period of exactly 2 sec is referred to as a seconds pendulum.

Demo:

- Simple pendulum 1 m in length; measure period with a stop clock; ~2 secs.
-Compare periods of pendula with same length, different masses; observe same periods.

