
Demonstrations:
•slinky toy to show transverse and longitudinal waves
Text: Fishbane 13-6, 14-1, 14-3
Problems: 51, 54, 59 from Ch. 13; 9, 21, 24 from Ch. 14

What’s important:
•physical pendulum
•speed of a wave on a string under tension

Physical pendulum

The simple pendulum of Lecture 30 consisted of a mass attached to the end of a
massless string.  Consider now the more physical situation in which an arbitrarily-
shaped object is hung from a pivot point.
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D   =  distance from 
pivot to cm position.

The force due to gravity generates a torque  about the pivot point that tends to restore
the body to its equilibrium position.

 = - (D  sin ) mg (- sign from clockwise torque)

But we know that
 = I  = I (d2  / dt2),

whence
(d2  / dt2) = - (mgD / I) sin .

For small angles , we can approximate sin   ~ , so that the last equation becomes

(d2  / dt2) = - (mgD / I) .
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This expression has the same form as the simple harmonic motion expression for
springs

(d2x / dt2) = - (k / m) x,

in which  = (k / m)1/2.  Thus, the physical pendulum executes simple harmonic
motion with

 = (mgD / I)1/2.

Note: in the simple pendulum, I = mD2, and we find  = (g / D)1/2 as expected.

Waves on a String

We introduced oscillations in terms of motion of single objects subject to a
restoring force.  We saw that the resulting motion was wavelike (i.e. a sine or cosine
function) as a function of time:

x

t

Now let's consider the oscillatory motion of an extended, deformable object, namely a 
string.  We observe both standing waves

••

Fixed point
 or node

node
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and travelling waves (time t2 is greater than t1)

The frequency of a wave depends upon its velocity.  We can find the form of the
relationship by considering a wave pulse.  Approximate the segement at the top of the
wave as part of a circle with arc length ∆s = R , as in the diagram

where the relationships among the angles is obtained from simple trigonometry

α
α

R
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The forces on the segment ∆  are from the tension S at each end of the segment

S S

segment

2 • S sin /2

where S is used to represent tension, rather than the more obvious T, since T is
already used for the oscillation period.  The components of S acting to restore the
segment to its equilibrium position are S sin /2 at each end.  Suppose that  is small,
so that we can make the small angle approximation sin  / 2 ~ /2.  The net force that
the segment experiences in the transverse direction is then

   2 S sin /2 ~ S (1)

Now,  is related to the arc length ∆  by

 = ∆  / R

so that the expression for the restoring force (1) can be rewritten as

S ∆  / R.

This force gives the string element an acceleration in the transverse direction,
which can be thought of as follows.  Imagine that we observe the wave by travelling
along beside it with a velocity v.  If we look at the segment at the top of the wave, then it
appears to experience a centripetal acceleration ac, given by the usual expression

ac = v2 / R.

Thus, the force S ∆  / R gives the segment of mass µ ∆  (where µ is the mass per unit
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length of string) an acceleration v2 / R.  Substituting into Newton's Second Law

S = ma,

we have

S ∆  / R = (µ ∆ ) (v2 / R)

S = µ v2

or

v = (S / µ)1/2 (2)

Equation (2) gives the velocity of the wave in terms of the tension in the string.

Note:
(i) both R and  have disappeared from Eq. (2).
(ii) the units work out as expected:

[force] ~ kg m2 / s2

[µ] ~ kg / m
[ (force / µ)1/2] ~ (m2 / s2)1/2 = m / s.
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