
Ground state of many-fermion systems

In the previous lecture, we showed that the energy levels for a particle in a
three-dimensional cubical box obeyed

K = (1 / 2m) (px2 + py2 + pz2)

= (h2 / 8mL2) (nx2 + ny2 + nz2)

where nx = 1, 2, 3, 4....  ny = 1, 2, 3, 4....  nz = 1, 2, 3, 4....  That is, for every positive

integer value for nx, ny and nz, there is an allowed energy state.  Plotting the values of

(nx, ny, nz) for which there are states, we find:

nz

ny

nx

In the drawing, there are 8 allowed states, one for each elementary box of dimension
1 x 1 x 1.  That is, the total number of unit boxes in the 2 x 2 x 2 cube is 8, and the
number of allowed states is 8.

Consider now what happens with a large number of levels.  The number of
levels with a maximum value nmax for any quantum number can be found by the

following argument:
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nmax

volume in this octant is (1/8) • (4π/3) • nmax3

Since there is one state for every box of unit volume, then the total number of states
with n's less than nmax is just the volume of the octant.  That is, the number of states is

(1/8) • (4π/3) • nmax3 = (π/6) nmax3

Filling these states with electrons (or protons, or neutrons), the total number of
fermions N  is

N  = 2 •  (π/6) nmax3 =  (π/3) nmax3

since there are two electrons allowed in every state.
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What's so important about nmax?  Why do we care about this calculation?  The

quantity nmax acts like a radius, and defines the maximum value of (nx2 + ny2 + nz2),

just like the radius of a solid sphere is the maximum displacement of an element of the
sphere from its centre.  Thus

(nx2 + ny2 + nz2)1/2 < nmax.

But the kinetic energy depends on (nx2 + ny2 + nz2), so that

K = (h2 / 8mL2) (nx2 + ny2 + nz2)  <  (h2 / 8mL2) nmax2.

This bound on K is called the Fermi energy or Ef.  Thus:

At large N , the maximum kinetic energy of an N -fermion system in its ground state is
Ef.  By "ground state", we mean that all of the fermions are forced to lie in the lowest

energy configurations available.

A simpler expression for Ef can be obtained by replacing nmax via

N  = (π/3) nmax3      or      nmax =  (3N / π)1/3.

Then

Ef = (h2 / 8mL2) (3N / π)2/3 = (h2 / 8m) • (3 / π)2/3 • (N  / L3)2/3.

But N  / L3 is just the density of particles - the number N  per unit volume V = L3.  So,

Ef = (h2 / 8m) • (3 / π)2/3 • (N  / V)2/3

Application: conduction electrons

In conductors such as copper, most electrons in each atom are tightly bound to
its nucleus and only a few are sufficiently loosely bound that they can move relatively
freely through the conducting material.  The loosely-bound or conducting electrons
move in a potential in which the strong charge of the atomic nucleus is screened by
the many electrons bound by it.  Thus, the particle-in-a-box problem makes a good
starting point for describing such electrons.
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Typically there are only one or two conducting electrons per atom in a
conductor.  As an illustrative example, suppose that there is one electron per atom,
and the that atom has a radius R of 0.2 nm.  As an approximation, assume that the
volume taken up by each atom is (4π / 3) R3, or 0.034 nm3.

The density of conducting electrons is then

density = 1 electron / 0.034 nm3 = 30 nm-3 = 3 x 1028 m-3

In fact, typical metals have conducting-electron densities of 1 - 8 x 1028 m-3.

The Fermi energy corresponding to this density is

Ef = (h2 / 8m) • (3 / π)2/3 • (N  / V)2/3

(6.63 x 10-34 J-s)2

8 x 9.11 x 10-31 kg

3

π
( )

2/3
(3 x 1028 m-3)2/3=

= 5.7 x 10-19 J

Converting this result to electron-volts yields

Ef = 3.5 eV.

The electron velocity corresponding to this kinetic energy is

v = (     )       = (                 )         = 1.1 x 106 m/s
2 K                  2 • 5.7 x 10-19

m                      9.11 x 10-31

1/2                                       1/2

or about 0.3% of the speed of light.  Not bad for an electron at room temperature.

Application: electrons in the Sun

The temperature of the interior of stars is typically larger than 107 K, which is too
hot for atoms to exist as bound states.  Treating electrons as unbound particles
traversing the Sun, we find that their Fermi energy is
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number of electrons in the Sun ~ 1057

volume of Sun = (4π / 3) Rsun3 = (4π / 3) (7 x 108)3 = 1.4 x 1027 m3

electron density = 1057 / 1.4 x 1027 = 7 x 1029 m-3

(6.63 x 10-34 J-s)2

8 x 9.11 x 10-31 kg

3

π
( )

2/3
(7 x 1029 m-3)2/3Ef =

= 4.6 x 10-19 J

Thus, the Fermi energy is about 30 eV, or about ten times the Fermi energy of an
electron in a conductor.  Normally, we don't worry about the Fermi energy of electrons
in stars, since the thermal energy scale kBT is

kBT = 1.38 x 10-23 • 107 ~ 1. 4 x 10-16 J ~ 900 eV.

Application: neutron stars

Let's consider the general problem of a star comprised of freely-moving
electrons and protons, in which we assume that
•the number of electrons and protons is the same (i.e., the star is not charged)
•the Coulomb interaction among the particles can be ignored.
Then both the electrons and protons will have a set of energy levels which they occupy
independently.

The separation between successive electron energy levels is larger than that of
the proton energy levels because the Fermi energy is inversely proportional to the
particle mass.  Since the proton is 1830 times as massive as the electron, then the
Fermi energy of a proton gas is 1 / 1830 times that of an electron gas at the same
density.  In the Sun, then

Ef (electron) ~ 30 eV

Ef (proton) ~ 0.016 eV.

Diagramatically,
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electrons protons

energy

The final stages of a star's life usually follow one of two scenarios:
•the nuclear fires in small stars go out, and the star collapses to a stable configuration

•the nuclear fires in large stars heat the star into the 108 K region and the star
explodes.
The cores of exploding stars can become very dense, and the corresponding Fermi
energy of electrons can become very high.  If the density is high enough, the Fermi
energy can reach millions of eV.

At high density, one might find that

mec2 + Ef (electron) + mpc2 + Ef (proton)    >    mnc2 + Ef (neutron)

If this occurs, then it become energetically favourable for an electron and proton to
react to form a neutron, releasing a neutrino:

e- + p → n + ν.
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electrons protons      neutronsenergy

At what density does this conversion to neutrons begin?  The following
calculation is a little crude, but it's good for an order of magnitude estimate.  If we
neglect the proton and neutron Fermi energies in the above expression for the
threshold energy, then the threshold condition is

mec2 + Ef (electron) + mpc2    >    mnc2

or

Ef (electron)  >    mnc2 -  mpc2  -  mec2 = 939.566 - 938.272 - 0.511 (MeV)

or

Ef (electron)  >  0.783 MeV = 1.25 x 10-13 J

This corresponds to a density of

(6.63 x 10-34 J-s)2

8 x 9.11 x 10-31 kg

3

π
( )

2/3
1.25 x 10-13 J(N  / V)2/3 =

= 2.1 x 1024 m-2

⇒     N  / V = 3.1 x 1036 m-3.

This is a very high density.  If all of the electrons in the Sun were concentrated at this
density, they would occupy a volume of
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V = 1057 / 3.1 x 1036 = 3 x 1020 m3 = 3 x 1011 km3.

The radius corresponding to this volume would be ~ 4000 km, somewhat smaller than
the Earth (6400 km) and MUCH smaller than the Sun (700,000 km).

Neutron stars form from larger objects than the Sun, so the radius for the onset

of the conversion reaction e- + p → n + ν is correspondingly higher.  However, the
radius of a stable neutron star once the conversion is complete, is much smaller than
4000 km, in the 10 - 15 km range.
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