
APPENDIX A

REVIEW OF KINEMATICS

This appendix contains a brief review of kinematics and dynamics,
approximately equivalent to the level of Grade 12 physics.  Section A.I
summarizes kinematics in Cartesian coordinates while Section A.II covers
dynamics in Cartesian coordinates.  Section A.III focuses on circular
motion, material which may not be familiar to all students.  Students do
not need to understand all the applications given in Appendix A in order to
understand the material in the main text.

A.I  Kinematics in Cartesian Coordinates

To describe the motion of an object, we need a set of reference points
against which to measure the position of the object as a function of time.
Ignoring the many space-time subtleties involved in setting up such a
reference system (dealt with in special relativity), in this section we define
a set of three mutually perpendicular axes X, Y and Z by which the object's
position is defined.  The Cartesian coordinate x, y or z of the object is the
distance along the X, Y or Z axis from the point at which the axes intersect
(called the origin O) to the intersection point of the axis with a line drawn
from the object perpendicular to the axis.
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Fig. A.1. Cartesian coordinates of an object at position r in the xy plane.

Appendices 181

© 1996 by David Boal, Simon Fraser University, Canada
All rights reserved; further resale or copying is strictly prohibited.



The position of an object with coordinates (x, y, z) is labelled by a
position vector r(x, y, z), where the notation r(x, y, z) just means that r is a
function of the coordinates x, y and z.  Position vectors have the same
general properties as other vectors.  For example, two vectors a and b can
be added together to form a third vector c.  This operation is written as c =
a + b. Vector addition is shown in Fig. A.2 for vectors in two dimensions.
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c = a  + b

Fig. A.2. Addition of two vectors a and b to form a new vector c.

It is clear from Fig. A.2 that the Cartesian components of vector c are
just the sum of the Cartesian components of vectors a and b. That is, if the
components of a and b are (xa, ya, za) and (xb, yb, zb) respectively, then
the coordinates of c are xc = xa + xb etc.  Subtraction of vectors k = a - b is
equivalent to the addition to a of the vector -b.  If vector b has
components (xb, yb, zb) then -b has components (-xb, -yb, -zb).  Hence
vector k has components xk = xa - xb etc.

Let's apply this to our discussion of positions. The relative position of
an object at r2(x2, y2, z2) with respect to position r1(x1, y1, z1) is defined as
the displacement vector r21:

r21(x21, y21, z21) ≡ r2(x2, y2, z2) - r1(x1, y1, z1). (A.1)

Equation (A.1) is a vector equation in that it applies to each of the
Cartesian components of the vector r21.  Cartesian coordinates have the
simplicity that

x21 = x2 - x1 y21 = y2 - y1 z21 = z2 - z1. (A.2)

If the object is moving with respect to the origin O, then r(x, y, z) is a
time-dependent quantity: r(x(t), y(t), z(t)). Suppose that the object is at
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position r1(x1, y1, z1) at time t = t1 and position r2(x2, y2, z2) at time t = t2.
We will assume below that t2 > t1.  The magnitude of the displacement
vector between these two positions is just the absolute magnitude of
r21(x21, y21, z21) as determined by Eq. (A.1). We denote the magnitude of
the displacement as

d = |r21(x21, y21, z21)| = (x212 + y212 + z212)1/2. (A.3)

The displacement depends only on the endpoints of the path
between positions 1 and 2, it does not depend on the length of the path
taken between these endpoints.  The length of the actual path followed
between the endpoints is called the distance, s.  It is clear that the
positions of the endpoints uniquely define the displacement.  However, we
have to know the path in order to determine the distance.  Note that if
after some time the object ends up where it started from, its displacement
is zero even if the distance it covers between the start and finish of its
motion is not zero.

For moving objects, we are interested in the rate of change of
position.  But we have two ways of measuring this change of position:
displacement and distance.  The average velocity vav is defined as the
displacement (change in position) divided by the change in time:

vav ≡ r21(x21, y21, z21) / (t2 - t1). (A.4)

Note that this is a vector equation: it applies to each component x, y, and z
separately.  The average speed is defined as the distance divided by the
change in time:

[average speed] ≡ [distance] / (t2 - t1). (A.5)

Unlike Eq. (A.4), Eq. (A.5) is not a vector equation: it has no components.
Speed has no direction, only a magnitude.

Because speed and velocity can change with time, just as position
can, then the average speed or average velocity is not a very detailed
description of the motion.  A quantity which measures the motion at a
particular time is the instantaneous velocity, v.  We define it just as we did
the average velocity, only now we let the difference between the two
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times t1 and t2 become very small: ∆t = (t2 - t1) → 0.  Then the
instantaneous velocity is

v(t) ≡ r21(x21, y21, z21) / (t2 - t1) as ∆t → 0. (A.6)

The speed is just the magnitude of the instantaneous velocity:

[speed] = |v|. (A.7)

Finally, we complete our definition of elementary kinematical
quantities by defining the acceleration. As with velocity, we can define the
average acceleration aav by

aav ≡ [v(t2) - v(t1)] / (t2 - t1) (A.8)

and the instantaneous acceleration by

a ≡ [v(t2) - v(t1)] / (t2 - t1) as ∆t → 0. (A.9)

Both of Eqs. (A.8) and (A.9) are vector equations.

The motion of an object at constant acceleration has a simple
solution.  At time t = 0, we assume that the particle is at position r = 0 ,
and  moves with (instantaneous) velocity vi. At constant acceleration, then
the average acceleration is equal to the instantaneous acceleration.  From
Eq. (A.9), we then have:

vf = vi + a t (A.10)

The velocity is a function of time in this problem, as shown in Fig. A.3.  To
determine the position as a function of time, we must evaluate a sum over
small time intervals ∆t of the product of the instantaneous velocity with ∆t.
This procedure is the same as finding the area under the curve of velocity
plotted as a function of time.  The area is simple to calculate and can be
written as a sum of two terms:
i) the area of a rectangle of base t and height vi, which gives vit
ii) the area of a triangle of base t and height (vf - vi), which gives (vf -
vi)t/2.
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Fig. A.3. Plot of velocity vs. time for an object with constant acceleration in
one dimension. The change in position of the object is equal to the cross-
hatched area under the curve.

Adding the areas in (i) and (ii), the displacement is d = v it + (vf -
vi)t/2, which can be rewritten using vf - vi = at from Eq. (A.10) to give:

d = vit + 1/2 at2. (A.11)

As implied by the boldface letters, Eq. (A.11) is a vector equation which
applies to each of the components of d, vi and a separately.  For motion in
one dimension, we can use Eq. (A.10) to express the time as t = (vf - vi)/a.
This allows us to rewrite Eq. (A.11) as

d = (vf2 - vi2) / 2a. (A.12)

A.II  Dynamics in Cartesian Coordinates

The kinematics which we discuss in Section A.I is largely descriptive:
it tells us how to describe the motion of a particle after the fact.  The study
of dynamics relates the object's motion to forces acting on it.  The
fundamental relationship is summarized in several physical laws
formulated by Sir Isaac Newton in the late 1600's. Newton's First Law
states:

A body at rest remains at rest and a body in motion continues in
uniform motion unless acted upon by an external force.
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This tells us what happens if there is no force present.  If there is a force,
then Newton's Second Law says that

A force acting on a body causes an acceleration which is in the
direction of the force and has a magnitude which is inversely proportional
to the mass of the body,

F = ma. (A.13)

As we have written it, Newton's Second Law relates force to
acceleration, which is in turn related to velocity and position by
kinematics.  In some situations, it is more appropriate to use an alternate
quantity to velocity called momentum, p.  As we define it, p is a vector
quantity.  In terms of p, Newton's Second Law reads

F = ∆p / ∆t  as ∆t → 0. (A.14)

In other words, the force is equal to the rate of change of momentum.  For
small velocities and situations in which the force does not depend on the
momentum, then

p = mv. (A.15)

There are many situations in which we prefer to work with momentum
rather than velocity, particularly when we are dealing with objects
travelling at very high speeds.

Just for completeness sake, we should also mention Newton's Third
Law, which has to do with the forces between bodies:

Whenever a body exerts a force on another body, the latter exerts a
force of equal magnitude and opposite direction on the former.

An example of Newton's Third Law is the situation in which two skaters
are standing motionless on an ice surface, each with their skate blades
pointing towards the other skater.  If one skater pushes on the other, then
they move away from one another and they both move with respect to the
ice.
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A force acting on a body can change its velocity.  If the body moves
through a distance while the force is acting, then the force is said to do
work on the body.  If the force is constant and the body moves in a
straight line, then the amount of work done is given by:

W = F∆x (A.16)

where ∆x is the change in the body's position in the direction of the force
while the force is acting.  Since constant force implies constant acceleration,
we can use Eqs. (A.12) and (A.13) to substitute for the force and find

W = m [ (vf2 - vi2) / 2 ∆x ] ∆x

= mvf2/2 - mvi2/2. (A.17)

The work results in a change to the quantity which we call the kinetic
energy:

K ≡ mv2/2 = p2/2m. (A.18)

In other words, the work done on the system increases its kinetic energy
from mvi2/2 to mvf2/2.

A.III   Circular Motion

The kinematics of some simple situations is cumbersome to describe
using Cartesian coordinates.  As an illustration, consider the motion of an
object moving at constant speed in a circular path of radius R.  Since the
speed is constant, it is tempting to say that the velocity is constant, but this
is not true.  While it is true that the magnitude of the velocity (which is
just the speed) is constant, the direction of the velocity changes
continuously.  We show the effect in Fig. A.4 for motion in the xy-plane.

To describe uniform circular motion, we introduce the period T as the
time taken for one complete orbit of the circular path.  Then the speed is
simply equal to the circumference of the circle divided by the period:

|v| = 2πR/T. (A.19)
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Fig. A.4. Motion of a particle moving in a circular path of radius R.  The
velocity of the particle is shown at several sample points.

Fig. A.5 shows how the direction of the velocity changes with
time.For example, at time 1 in Fig. A.4, the position vector points to the
right while the velocity vector points to the top of the page.  On Fig. A.5,
which is a graph of (vx,vy), the velocity at time 1 has components (0, v).
Some people find the form of Fig. A.5 surprising: they expect to see both
the tip and the tail of the velocity vector sitting on a circular path.
However, what is shown in Fig. A.5 is the true time evolution of the
velocity vector.  It is really Fig. A.4 which is confusing, since sample values
of the velocity vector have been superimposed on a position diagram.
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∆v

v

Fig. A.5.  Change in velocity vector as a function of time for circular motion
at constant speed. The total change in the velocity in the period T is equal
to the perimeter of the circle of radius v.
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From Fig. A.5, the total change in the velocity vector in time T is
equal to the circumference of a circle of radius v.  Hence, the magnitude of
the acceleration is equal to

a = 2πv/T (A.20a)
= v2/R. (A.20b)

Eq. (A.20b) follows from solving Eq. (A.19) for T and substituting into Eq.
(A.20a).  The direction of the acceleration vector changes in time.  The
velocity vector is always perpendicular to the position vector R, as shown
on Fig. A.4. The change in the velocity vector ∆v is perpendicular to the
velocity vector, as can be seen from Fig. A.5.  Hence, the acceleration
vector, which is proportional to the change in the velocity vector, must lie
along the same axis that R does.  Careful inspection of Figs. A.4 and A.5
shows that ∆v points towards the centre of the circle at all times.  Hence,
the acceleration vector must point towards the centre of the circle, and we
call it the centripetal (or centre seeking) acceleration.

We have now found the acceleration in terms of the speed and
radius. But rather than complete the kinematical description of circular
motion using Cartesian coordinates, which lead us into sine and cosine
functions, we will instead develop a set of angular coordinates to describe
the motion.  Let's return to Fig. A.4 for a moment.  Suppose that the initial
position of the object is on the x-axis at time t=0.  We define an angle  as
the angle between the position vector R and the x-axis.  Then the arc
length s, or distance which the object has traveled, is

s = R. (A.21)

The speed, which is the rate of change of s, is then

[speed] = R ( 2 - 1) / (t2 - t1). (A.22)

Since R is a constant in this situation, then it is the rate of change of 
which carries the information about the motion.  We define the angular
speed to be

av ≡ [average angular speed]

≡ ( 2 - 1) / (t2 - t1). (A.23)
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We can also define an average angular acceleration av as the rate of
change of the angular speed:

av ≡ [average angular acceleration]

≡ ( 2 - 1) / (t2 - t1). (A.24)

The quantities ,  and  are angular variables related to the
corresponding Cartesian variables s, v and atan by

s = R v = R atan = R, (A.25)

where atan is the component of the linear acceleration that is tangential to

the circle.  For the situation we have just solved, uniform circular motion, 
and atan are constant, since v is constant, and

s = Rt  = v/R  = 0. (uniform circular motion) (A.26)

There are other angular variables related to the force and
momentum.  The kinetic energy for circular motion is

K = mv2/2 = m ( R)2/2 = (mR2) 2/2 = I 2/2 (A.27)

where I  is the moment of inertia, defined for a single particle as mR2.  The
angular momentum L has the same relationship to the moment of inertia
and the angular speed as the momentum does to the mass and speed:

L = I . (A.28)

The angular equivalent of force is the torque, . Torque enters into
Newton's Second Law as

 = I . (A.29)

Clearly, the formalism which we have developed for Cartesian coordinates
has an equivalence in angular coordinates.  Further, there are vector
analogues to velocity and acceleration as well: vector angular velocity, ,
vector angular acceleration, , and vector angular momentum, L.  However,
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to deal with these quantities properly here would take us too far from our
purpose, and so we refer the interested reader to any introductory text on
mechanics for more information.

Further Reading

P. A. Tipler, Physics for Scientists and Engineers (Worth, New York, ed. 3,
1991), Chaps. 1 - 6, 8.

H. D. Young, University Physics (Addison-Wesley, Reading, ed. 8, 1992),
Chaps. 1 - 6, 8 - 9.

R. Resnick, D. Halliday and K. S. Krane, Physics (Wiley, New York, ed. 4,
1992), Chaps. 1 - 7, 11.
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