
CHAPTER 1

ATOMS, NUCLEI AND PARTICLES

You've probably heard it said that the microscopic atomic and
nuclear worlds have length scales and mass scales that are much smaller
than our familiar macroscopic world.  How do we know this? Although
scientists had no means of directly measuring sizes in their early
exploration of the atomic world, they were able to deduce order of
magnitude estimates based on a number of observations.  For example, in
the nineteenth century Lord Rayleigh (1842-1919) postulated that oil
spread on water could form a layer only one molecule thick.  He calculated
approximately the thickness of this layer by spreading a known volume of
oil on a calm lake and estimating, through the observation of reflected
light, the area of the lake covered by oil.  Assuming that the total volume
of oil did not change during spreading, he found the thickness of the layer
had to be in the range of 10-9 m or 1 nanometer (nm).  We know today his
estimate of molecular sizes is approximately correct.

Most studies of atomic and subatomic dimensions in the twentieth
century have used the scattering of particles from targets to probe very
small distances.  Sir Ernest Rutherford (1871-1937) pioneered the use of
this technique and used it to deduce the nuclear model of the atom in 1911
while working at Manchester University.  Rutherford, a New Zealander by
birth, worked at McGill University from 1898 to 1907 where he performed
work on the transmutation of the elements.

In the last two decades, several new microscopy techniques have
been developed that allow materials to be observed on atomic distance
scales.   The new techniques are known by their three-letter acronyms
(TLAs) of  scanning tunneling microscopy (STM) and atomic force
microscopy (AFM), to name but two examples.  An STM image of a liquid
crystal layer is shown in Fig. 1.1, in which the ordered arrangement of the
liquid crystal molecules is apparent.  At the molecular level, most liquid
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Fig. 1.1. Scanning tunneling microscope image of a layer of liquid crystal
molecules called 8CB.  An outline of the atomic arrangement in the
molecule, two rings with a long tail, is indicated in the upper left section.
The molecules appear as double rows, with a kink every fourth molecule.
the br in the lower left corner indicates the scale of the image: 5 nm
(courtesy of Jeff Hutter and John Bechhoefer, Simon Fraser University).

crystals have highly non-spherical geometries that encourage the axes of
neighbouring molecules to align.

1.A  How We Measure What We Can't See

Suppose we want to find the size of an apple. One way we can
proceed is to wrap a flexible tape measure around the apple and measure
its circumference, or use calipers to measure its diameter.  A less direct
measurement is to shine light on the apple and measure its shadow with a
ruler.  The light source can't be too close to the apple, or the shadow will
not be a true representation of the apple's size.  The ruler provides us with
a standard measure.  In each of these measurement techniques, the
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geometry of the apple is compared directly to a standard length scale
inscribed on a ruler.

At the atomic level, we are forced to use indirect means to determine
sizes since we can't see with our eye exactly where the atoms or their
shadows are.  Consider how we could modify the measurement of the
apple's shadow if the apple were placed in a box at a location that was
unknown to us.  We'll let the box have an open top and bottom, and not
worry about how the apple is suspended inside.  An indirect measurement
of the apple's size might involve dropping sticky marbles through the top
of the box, and seeing how many of the marbles pass out the bottom of the
box.  The marbles that are stuck to the apple and do not pass through the
box represent the apple's shadow.

Since we don't know precisely where the apple is, then we'll have to
drop marbles at many random positions through the top of the box.  For
example, if we dropped all of our marbles through the centre of the box
while the apple was off in one corner, then not only would we conclude
from the large number of marbles coming out the bottom that the apple
was very small, we might conclude that it wasn't there at all.  This marble-
dropping experiment is an indirect or probabilistic measurement.  We use
the probability of a marble getting past the apple to deduce something
about the apple's size.

Example 1.1: We place an ideal "spherical" apple of radius 3 cm in
a box of length 1 m to the side.  We drop 10,000 very small and very
sticky marbles into the box at random positions.  Estimate how many
marbles stick to the apple.

We assume that if any one of these very small marbles hits the
apple, it sticks.  That is, if any marble has a trajectory which passes within
3 cm of the apple's centre, it sticks.  Obviously, if the marbles were large,
then we would need to take into account more than just the 3 cm radius
of the apple.  This 3 cm radius defines an area of π32 = 28.3 cm2 which
the apple presents to the marbles raining down on it.  Now, the area of
the top face of the box is 1 m2, or 1002 (=104) cm2.  Since 104 marbles
have been dropped into the box, then there is one marble for every cm2

of area on average.  Hence, about 28 marbles should stick to the apple,
given that  there is an average of 1 marble per cm2 of area and that the
apple presents an area of 28 cm2 to the falling marbles.
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In Example 1.1, the area of the apple is used to deduce the number
of marbles sticking to it.  The situation is different in an experiment, where
the area of the target is what we are trying to measure.  To use the
apple/marble example, in an experiment we would know the number of
marbles per unit area entering the box and we would count the number of
marbles passing through the box.  From these two numbers (the number of
marbles in and the number of marbles out), the apparent cross sectional
area of the apple can be determined.  This cross sectional area, which is the
area of the apple measured perpendicular to the direction of the incoming
marbles, is simply called the cross section and denoted by the Greek letter
sigma: .  In Section 1.B, we repeat the analysis of Example 1.1 and derive
some algebraic expressions for the cross section.

The idea that we have described is the essence of a scattering
experiment.  There are some obvious problems of which we should be
aware in interpreting scattering experiments, and there are some
important improvements that can be made to the technique.

Firstly, the experiment is a statistical measurement.  The fewer
marbles that are dropped into the box, the less accurately the size of the
apple is determined.  In our example, if 1,000 marbles were dropped into
the box instead of 10,000, then we would expect only 3 marbles to stick to
the apple on average.  If the experiment were repeated again and again
with 1,000 incoming marbles (removing the attached marbles between
experiments!), then sometimes we would find 1 or 2 marbles, sometimes 4
or 5, would be stuck to the apple.  This variation arises because the
marbles are dropped into the box randomly, not on a regular grid of points.
Hence, good accuracy is obtained only with a large number of marbles.

Secondly, the measurement process as we've described it is
cumbersome.  Counting all of the marbles is a nuisance, particularly since
we are trying to determine how many marbles did not pass through the
target region.  It takes a lot of labour to count up 9972 marbles when all
we want to know is that 28 marbles are missing. In the experimental
implementation of a scattering measurement, we count the "stuck" marbles
directly rather than determine them as a difference between two large
numbers.

There are several ways in which scattering experiments are
performed in subatomic physics to determine sizes.  Usually, small nuclei
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or particles are accelerated to form a particle beam and used to bombard
larger nuclei.  Some beam particles stick to the target nuclei, thereby
changing the target nucleus to one which is physically different.
Experimentally, one can measure the radioactive decay of the transformed
nuclei or one can manipulate the target chemically (e.g., dissolve it in acid)
and separate out the transformed nuclei.  In either case, it is like
measuring the number of apples that have marbles stuck to them and
deducing the likelihood that an incoming marble finds an apple to stick to.

A different approach is to use a sticky box rather than sticky
marbles.  Then, marbles bounce off the apple but stick to the inside of the
box.  In a subatomic physics experiment, the sticky box is usually an
electronic device called a detector.  Detectors can directly count the
number of times they are struck by a scattered particle.  Experiments
using helium nuclei as the marbles and heavy metals such as gold and
platinum as the apples were performed by Hans Geiger (1882-1945; later
to invent the Geiger counter with his student W. Muller in 1928) and
Ernest Marsden (1889-1970) at Manchester in 1909.  In 1911, Rutherford
developed a theory for analysing data from the Geiger/Marsden scattering
experiments and was able to deduce the size of a nucleus.

1.B  Cross Sections

Section 1.A gives a general description of the scattering process and
how it can be used to estimate sizes.  We now cast these ideas into a more
mathematical form.  The statistical nature of a scattering experiment
requires us to introduce the idea of probability, which we denote by P.
The probability is the measure of the likelihood for a given result to be
found.  The maximum value of P is one, and this corresponds to a given
result always occuring.  For example, if it always rains on the weekend
then we would say that the probability of it raining on the weekend is 1 (P
= 1).  If a particular result is not always obtained in a set of measurements,
then the probability of the result is less than one.  If it only rains on half
the weekends during the year, then the probability of rain on the weekend
is one-half (P = 0.5).  If it never rains on the weekend (not likely in
Vancouver) then P = 0.  So the range of P is 0 ≤ P ≤ 1.

In a probabilistic experiment to probe subatomic systems, a beam of
particles is sent towards a target.  The beam is set up so that it is roughly
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uniform over its own width transverse to its direction of motion.  The
target is generally larger in area than the beam is, so not all of the target is
hit by the beam.  The target is made sufficiently thin that a beam particle
is not likely to scatter a second time once it scatters off a particle in the
target.  We measure the probability of scattering, P, as

P = [number of beam particles scattered] ÷
[total number of beam particles shot at the target]. (1.1)

If all of the beam particles are scattered by the target, then the numerator
and denominator on the right hand side of Eq. (1.1) are the same and P = 1.
If none of the beam particles are scattered, then P = 0.

To use the marble/apple example, the probability P that a given
marble is scattered is equal to the number of scattered marbles divided by
the total number of marbles dropped into the box.  The words "shot at the
target" in Eq. (1.1), as applied to the apple/box system, means all of the
marbles dropped into the box, not just those that are heading towards the
apple.

Beam

Unscattered 
Particles

Scattered 
Particles

tTarget region

Fig. 1.2.  The scattering probability is equal to the number of particles
scattered by the target divided by the number of particles shot into the
target region.
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Example 1.2: Suppose that 28 marbles actually stuck to the apple
during a trial experiment of Example 1.1.  What is the measured
scattering probability?

From the definitions in Eq. (1.1) we have

[number of beam particles scattered] = 28

[number of beam particles shot at the target] = 104

P = 28 / 104 = 0.0028 = 2.8 x 10-3.

Therefore, the scattering probability is 2.8 x 10-3.

Example 1.3: In a scattering experiment, a beam of particles
strikes a target at the rate of 1012 per second.  What is the scattering
probability if 108 particles are scattered by the target per second?

Using the definitions in Eq. (1.1), in one second we have

[number of beam particles scattered] = 108

[number of beam particles shot at the target] = 1012

so that

P = 108 / 1012 = 10-4.

Therefore, the scattering probability is 10-4 or 0.01%.

Now, we argue in Example 1.1 that the scattering probability should
be equal to the effective area which the target presents to the beam,
divided by the real area of the target actually exposed to the beam.  That
is,

P = [total effective area of target particles exposed to beam] ÷
[total real area of target exposed to beam]. (1.2)
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In the marble/apple example, the effective area of the target particles is
the cross sectional area of the apple (28 cm2), and the total target area
exposed to the beam is the area of the box (104 cm2).  If there were two
apples in the box then the effective area of the target particles would be
56 cm2, assuming that one apple did not hide the other.

Example 1.4: Predict the scattering probability for the situation in
Example 1.1 by using Eq. (1.2).

Since there is only one apple in the box, then the total effective
target area is just that of the single apple.  Using the definitions in Eq.
(1.2):

[total effective target area] = π32 = 28.3 cm2

[total area of target exposed to beam] = 104 cm2.

Hence, we predict that

P = 28.3 / 104 = 2.8 x 10-3.

Therefore, the scattering probability is 2.8 x 10-3.

Let's cast Eq. (1.2) into symbols.  We define AT as the area of the
target exposed to the beam and nT as the number of target particles per
unit area (of the target exposed to the beam). The number of target
particles exposed to the beam is then nTAT.  In Section 1.A, the effective

area of a single target particle is defined as .  Hence, the summed
effective area of all of the target particles equals the number of target
particles times , or nTAT , as illustrated in Fig. 1.3.  Eq. (1.2) can be
written symbolically as:

P = nTAT  / AT = nT . (1.3)

The AT terms cancel out in Eq. (1.3), showing that the scattering
probability has no explicit dependence on the target area exposed to the
beam.
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Fig. 1.3. The total area of the target exposed to the beam is AT, while the

effective area of a single target particle is .

Example 1.5: Predict the scattering probability for the situation in
Example 1.1 by using Eq. (1.3).

The number of target particles per unit area is one apple in 1 m2,
or

nT = 1 m-2 (or 10-4 cm-2).

The effective area of a single apple is

 = π x 0.032 = 0.0028 m2.

Hence

P = nT  = 1 x 0.0028 = 2.8 x 10-3.

Therefore, we find that the scattering probability is 2.8 x 10-3, just as we
did in Example 1.4.

The quantity nT is sometimes called an area number density and it
depends on the material of which the target is made and also on the target
thickness along the path that the beam takes through the target.  In
different words, nT is simply the number of particles which lie in the path
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of a beam with unit area.  If the target thickness is doubled, then nT must
double as well since there are twice as many particles that the beam
potentially can strike.

1.C  Sizes and Masses

Sections 1.A and 1.B introduce the concepts and mathematical
formalism behind the experimental methods used to determine the sizes of
very tiny objects.  It is shown that scattering experiments, which measure
the probability of interaction between a beam and a target, can be
described in terms of a quantity called the cross section.  While it is
demonstrated in Chapter 2 that the geometrical interpretation of the cross
section as a direct measure of size has its limitations, nevertheless
scattering experiments are the principal means of determining the
effective sizes of objects in the atomic and subatomic worlds.  Not
unexpectedly, it is found that cross sections for the scattering of a
particular beam from a particular target depend on the bombarding
energy of the beam.  Let's see why....

Scattering experiments performed using small low-energy particles
(for example, electrons with a speed of 106 m/s) can measure atomic
dimensions.  While 106 m/s may be an impressive speed for a car, or even
a satellite, such electrons can be deflected by atoms.  Experiments with low
energy electrons show that atoms typically have a diameter in the range of
a few tenths of nm or, equivalently, a few Ångstroms.  The apparent radius
of an atom depends on its charge state, by which we mean whether the
atom is electrically charged or neutral.  The systematics of atomic sizes
leads us into chemistry which, although an interesting subject in itself, is
not the material of these lectures.

If the energy of a beam particle is high enough, it will pass into and
perhaps through the atom rather than be scattered by it.  Cross sections
measured with high energy particles are then much smaller than those
found with very low energy particles, since only the target nuclei, rather
than the target atoms, scatter the high energy particles.  Experiments show
that nuclei have radii of the order 10-15 m, which is about 10-5 times the
magnitude of an atomic radius.  Because the nucleus contains most of the
atom's mass, then the atomic mass must be concentrated in a very small
volume of about (10-5)3 = 10-15 times the magnitude of the atomic volume

Chapter 1 16

© 1996 by David Boal, Simon Fraser University, Canada.
 All rights reserved; further resale or copying is strictly prohibited.



(the cube arises because the volume scales like the radius cubed).  Before
moving on to describe what happens at high bombarding energies, we
pause to examine the nucleus a little further.

Two different particles, protons and neutrons, are known to inhabit
the nucleus.  Protons and neutrons are about equal in mass and share
many other characteristics in common, so they are referred to collectively
as nucleons.  Each proton carries a particular electrical charge while
neutrons are electrically neutral.  The rest of the atomic volume outside of
the nucleus is occupied by electrons.  Each electron carries an electrical
charge which is opposite in sign to that of a proton.  However, the
similarity between electrons and protons ends at the absolute magnitude
of their charge: protons are about 2000 times heavier than electrons and
have very different scattering properties.

The number of protons in a nucleus is defined as Z, and the number
of neutrons is N.  The mass number A of a nucleus is the total number of
protons and neutrons:

A = Z + N. (1.4)

Experimentally, the nuclear radius increases smoothly with mass number.
There is a subtle question here as to how to define the radius of a group of
objects (e.g. nucleons) in motion about each other.  One definition uses the
radius R of an imaginary spherical surface within which the moving objects
spend 90% of their time.  Approximately, it is found that

R = 1.2 A1/3 fm, (1.5)

where fm is a metric unit called the femtometer or fermi, and is equal to
10-15 m.  That is, a nucleus with 125 nucleons (A = 125) has a radius of
approximately 1.2 x 1251/3 = 6 fm = 6 x 10-15 m.

This A1/3 scaling behaviour is what we expect for a system whose
constituents each occupy a fixed volume and are closely packed together.
For example, suppose nuclei were made of hard cubic building blocks each
with the same mass M and length l to the side.  Then eight of these blocks
packed in a cube would have a mass of 8M and length 2l.  A cube of 27
blocks would have a mass of 27M and length of 3l, and so on.  We see that
the size (2l, 3l...) of a group of building blocks is proportional to the cube
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root of the group mass ([8M]1/3, [27M]1/3...) for close packing in three
dimensions.  In contrast, if the building blocks were spread out in a
straight line, then length of the line would be proportional to its mass, not
the cube root of its mass.  Hence, the nucleus can be thought of as an object
composed of nucleons packed closely together.

According to Eq. (1.5), the nucleons that make up the nucleus are in
close contact with each other, but do not all sit at exactly the same point in
space.  What about the individual nucleons: do they really have a radius of
about 1 fm as Eq. (1.5) suggests for A = 1?  This question can be answered
experimentally by scattering electrons from a hydrogen target.  The
hydrogen nucleus consists of a single nucleon, the proton.  Scattering
experiments confirm that the proton has a definite size as well: about 1 fm.

The scattering of electrons from electrons shows a different pattern
than the scattering of electrons from protons.  At all of the electron beam
energies that are currently available, the electrons appear to be point-like:
they appear to have zero size and no internal structure.  Now, it may well
be that at some future time we will be able to accelerate electron beams to
high enough energy that we probe "inside" the electron in the same way
that increasingly energetic beams were used to probe further "inside" the
atom earlier in the twentieth century.  But for now, electrons appear to be
point-like down to a distance of 10-16 m.  A description of the beam
energies and particle produced by the world's most powerful particle
accelerators is provided in Appendix B, which also contains more material
on the target number density nT.

The atom has a measurable size and is made of constituent particles:
electrons and a nucleus.  The nucleus has a measurable size and is made of
constituent particles: nucleons.  The proton has a measurable size: is it
made of constituent particles?  The answer to this question can be
determined experimentally by raising the beam energy still further so that
the beam particles pass into the proton.  Unlike nuclei, which will shatter
into their constituent nucleons if they are hit hard enough, so far it has not
been possible to break up a proton into a set of isolated constituents.
However, the scattering data show definite evidence that there are three
strong scattering centres within each proton.  The most successful model to
date for describing nucleons proposes that these scattering centres are
quarks.  It is likely that there is more to a nucleon than just quarks, a
subject to which we return in Chapter 5.
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Before closing out this discussion, we take a brief look at masses.
Direct mass measurements may involve injecting a charged particle into a
magnetic field.  As you will learn in other physics courses, the force that a
magnetic field exerts on a charged particle is at right angles to the plane
formed by the direction of the field and the direction of the particle's
motion.  In other words, the force produces an acceleration that is
perpendicular to the particle's velocity.  As is discussed in Appendix A.III,
a perpendicular acceleration does not change the magnitude of a velocity,
but does change its direction.  The particle executes a circular orbit in the
magnetic field, and the radius of the orbit is proportional to the particle's
mass.  This provides us with an experimental technique for determining
the mass of a charged particle.

This and other techniques have been used to determine the masses
of a few hundred elementary particles, about a thousand nuclei and
several thousand atoms in various charge states.  Sample elementary
particle masses are given in Table 1.1, while Appendix C contains a more
extensive tabulation.  Table 1.1 shows that elementary particle masses are
very small, typically 10-27 kg.  The photon, which is the elementary
particle of light, may have no mass at all: Table 1.1 only lists the
experimental upper bound to the photon mass.

Nuclei are characterized by the number of protons Z and neutrons N
that they contain.  The mass of a nucleus is generally about 1% less than
Zmp + Nmn, where mp and mn are the proton and neutron masses,
respectively.  This 1% difference in masses is very important, as we
demonstrate in Chapter 4.  An electrically neutral atom composed of Z
electrons and a nucleus of Z protons and N neutrons has a mass very close
to, but also slightly less than, the sum of the nuclear mass and the electron
masses.

Table 1.1 Representative masses of elementary particles.
__________________________________________________________________

Particle Symbol Mass (kg)
__________________________________________________________________

photon     γ < 5.3 x 10-63

electron     e- 9.109 x 10-31

proton     p 1.6726 x 10-27

neutron     n 1.6750 x 10-27

__________________________________________________________________
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Summary

The sizes of subatomic particles are probed by means of scattering
experiments.  The experimental probability P that a beam particle is
scattered by a target is obtained from

P = [number of beam particles scattered] ÷
[total number of beam particles shot at the target].

The cross section , which is the effective area of a target particle in its
interaction with a beam particle, can be extracted from P via Eq. (1.3),

P = nT ,

where nT is the number of target particles per unit area of the target
exposed to the beam.  As shown in Appendix B, the areal number density
nT is related to the target's atomic mass, thickness (t) and mass density ( )

by nT = tNo / [atomic mass] where No is Avogadro's number, although we
emphasize that it is not necessary to know this relationship to understand
the remaining material in these lectures.

Scattering experiments show that atomic radii are typically around
0.1 nm, depending on the charge state.  Nuclear radii are given
approximately by Eq. (1.5),

R = 1.2A1/3 (fm),

where A is the mass number of the nucleus.  The mass number is the sum
of the number of protons Z and the number of neutrons N.  The radii of
some elementary particles, like the proton and neutron, are in the 1 fm =
10-15 m range, while the radii of a few other particles, such as the electron,
is below the detectable limit of current experiments.
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Further Reading

F. Close, M. Marten and C. Sutton, The Particle Explosion (Oxford, New York,
1987) [general reading].

B. McCuster, The Quest for Quarks (Cambridge, London, 1983),    Chap. 1.

W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York,
1967), Chap, 1.

E. Segre, Nuclei and Particles (Benjamin, New York, 1964), Chaps. 1 and 2.
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Problems

Several of these problems use the surface area (4 R2) and volume (4 R3/3)
of a sphere of radius R.

1. An oil tanker spills 5 million litres of light oil, which spreads over the
ocean until it forms a layer 1 nm thick.  (a) What is the area of this film?
(b) What fraction of the Earth's surface does it cover?

2. A problem vaguely related to Rayleigh's oil spreading experiment is the
melting of the Earth's polar ice caps by global warming.  Suppose that an
ice sheet 1200 m thick covering an area the size of Greenland (2.2 x 106

km2) melts without a change in volume.  By what height would the sea
level rise if this amount of water were added to the world's existing
oceans?  Assume that the oceans cover 71% of the Earth's surface.

3. Okanagan Lake has a surface area of roughly 600 km2.  How many litres
of gasoline are required to cover the lake with a film of thickness 2 nm (i.e.
a layer about a molecule thick)?

4. In a particular scattering experiment, particles are sent towards a target
at a rate of 1016 particles every hour.  What is the scattering probability if
1010 particles are scattered by the target each second?

5. The scattering probability of a given target is 10-3.  How many particles
would be scattered per second by the target if the incoming beam contains
1013 particles per second?

*6. Suppose that when marbles hit an object, none of them stick and they
are scattered equally in all directions in three dimensions?  What fraction
of the marbles scatter within an angle of 45o of the beam direction?

7. A beam of 100 (absolutely sticky) marbles per second is aimed at an
apple.  The scattering probability is 0.005.  How long will it take before 30
marbles are stuck to the apple?

8. A single layer of atoms in a solid has about 1020 atoms/m2.  If the
effective radius of a nucleus in these atoms is 2 fm, what is the probability
of a beam particle scattering from a nucleus in the single layer of atoms?
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9. Calculate the mass density of a silver nucleus (A = 107) and compare it
with the mass density of the Earth and the Sun.

10. Calculate the approximate radius of helium (A = 4), iron (A = 56) and
gold (A = 197).  If all of the nucleons in each of these nuclei were within
the calculated radii, what would the mass densities of each nucleus be in
kg/m3?

11. Greater Vancouver covers an area of approximately 1000 km2.
(a) What is the probability that a meteor which strikes anywhere on the
surface of the Earth actually strikes Vancouver?
(b) If one such meteor strikes the Earth every week, what is the average
time between meteor strikes in Vancouver?

*12. A sphere has the same cross sectional area no matter what angle it is
viewed from.  In contrast, the cross section of a cube will change with
viewing angle.  Calculate the cross sections of a cube when it is viewed face
on and when it is viewed along a line drawn diagonally through opposite
vertices.  What is the maximum cross section of the cube?

13. (a) Find the radius of a sphere that has the same volume as a cube of
length L to the side.
(b) What is the ratio of the cross section of the cube to the cross section of
the sphere in (a)? Assume that the cube is viewed face on.

14. Calculate the cross section of lithium (A = 6), calcium (A = 40) and lead
(A = 208) using Eq. (1.5).  Quote your answer in m2.

15. One mole of atomic hydrogen contains 6.022 x 1023 atoms and occupies
22.4 litres.  What fraction of this volume is occupied by the hydrogen
nuclei, if each nucleus has a radius of 0.8 fm?

16. From the data in Appendix C.II, calculate the mass density  (in kg/m3)
of the Earth, Moon and Sun.  If a nucleon has a mass of 1.7 x 10-27 kg, how
many nucleons are there per cubic meter in each of these bodies?  Which
of the Earth, Moon and Sun would you conclude have a similar physical
makeup?
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The following questions use material from Appendix B.II for calculating
the number density of a target.

17. Calculate the probability of particles scattering from an aluminum (A =
27;  = 2.7 g/cm3) target 0.01 mm thick and a gold  (A = 197;  = 19.3
g/cm3) target 0.01 mm thick.  Assume that the scattering is from the
target nuclei and use Eq. (1.5) to determine the nuclear cross section.

*18. Calculate the thickness of an iron (A = 56;  = 7.8 g/cm3) target such
that the total effective area of the iron nuclei is equal to the total target
area presented to the beam.  Use Eq. (1.5) to determine a cross section for
the iron nucleus.  [Ignore the situation in which the nuclei are all lined up
in a row facing the beam.]

*19. Clouds of gaseous hydrogen present in space tend to obscure our view
of stars behind them.  Suppose that a cloud composed of H2 has a density

of 10-22 g/cc.  How thick must the cloud be such that it scatters half of the
cosmic ray nuclei passing through it?  Take the cross section for scattering
of a cosmic ray on H2 to be 10 fm2.

20. a) Find the number of target nuclei per unit area of a rectangular
copper (A = 63;  = 8.95 g/cm3) target 0.1 mm thick.
b) One beam particle in 4000 is observed to scatter from the target.  What
is the cross section for the scattering process?
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