
CHAPTER 8

THE EXPANDING UNIVERSE

Methods for determining distances to nearby and moderately remote
stars and galaxies are reviewed in Chapter 7.  In this chapter, we introduce
a technique for extracting the velocity of a star or galaxy with respect to
the Earth.  It is found that the more remote galaxies appear to be moving
away from the Earth with a velocity that is proportional to their distance
away from us.  This velocity/distance relationship, referred to as Hubble’s
law, is the basis for the Big Bang model in cosmology, and leads to an
estimate of the age of the universe.

8.A  Doppler Effect

The technique for measuring the velocities of very remote galaxies is
based upon the Doppler shift - the shift in the apparent wavelength of a
wave due to the relative motion of the emitter of the wave with respect to
the observer.  We are all familiar with terrestrial examples of the Doppler
shift.  When an ambulance approaches us, the sound from the siren
appears to have a higher pitch (or frequency) than when the ambulance is
moving away from us.  This is a situation in which the frequency that we
hear as a stationary observer changes because of the motion of the wave
emitter (the siren).  It is easy to see how this effect arises by considering
the diagrams in Fig. 8.1.

Diagram (a) of the figure shows the natural wavelength  of the
waves emitted by the source.  The waves can be anything: light, sound,
water waves....  Now consider what happens when the source S is moving
away from the observer O with a speed v as in (c).  Say at time t = 0 the
crest of a wave emerges from the source.  The crest travels towards O with
a speed c equal to the speed of the wave in whatever medium it is
traveling.  But the source continues to move away from the observer as
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Fig. 8.1 S represents a source of waves, and O an observer.  The natural
wavelength  is shown in (a), in which S is at rest with respect to O.  In (b),
S moves towards O and the wavelengths appear shorter as seen by O.  In
(c), the source moves away from the observer.

well.  At a later time, given by the period T of the wave, another crest
emerges from the source.  The period T is the inverse of the frequency and
is equal to c.  As seen by O this crest is not at a distance  from the first
crest, because the source has moved a distance vT since it emitted the first
wave crest.  According to the observer, the second wave is emitted at a
distance  plus vT.  The distance between the crests ', which is the
wavelength according to the observer, is

' =  + vT =  + v( /c) =  (1 + v/c). (8.1)

The shift in the wavelength from  at the source to ' at the observer
is referred to as the Doppler shift of the wave.  Eq. (8.1) shows that  ' > 
for the situation in (c).  For sources moving towards the observer, the
analysis is the same but the sign of v/c is reversed and ' < .  Equation
(8.1) applies to a moving source and a stationary observer.  Slightly
different equations apply to situations in which the source is stationary
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and the observer is moving, or in which both the source and observer are
moving.  These other cases are dealt with in most introductory physics
texts.  Eq. (8.1) is really an approximation valid at velocities small
compared to c, and it is not accurate as v  → c.

Example 8.1: An ambulance siren is blaring at 3000 cycles per
second as the ambulance speeds along at 30 m/s (108 km/hr).  What
frequency do you hear as the ambulance heads straight towards you,
and as the ambulance heads straight away from you?  Use c = 342 m/s
for the speed of sound in air.

Eq. (8.1) applies for a source moving away from the observer.  For
a source moving towards the observer, we have ' =  (1 - v/c), or
equivalently ' /  = (1 - v/c), with v > 0.  Wavelengths can be replaced by
frequencies using f = c/ , so that

f' / f = (1 - v/c)-1.

For the ambulance siren, the shifted frequency f' is

f' = 3000 / (1 - 30/342) = 3290 s-1.

Thus, you hear a higher frequency for the siren when the ambulance is
heading towards you than when the ambulance is stationary.  By similar
reasoning, when the siren is moving away, the frequency heard by a
stationary observer would be less than that heard inside the ambulance:

f' = 3000 / (1 + 30/342) = 2760 s-1.

The Doppler method can be used to determine the speed of stars or
galaxies by measuring light waves.  It is known that the emission (and
absorption) of light under some circumstances involves waves of a very
precise frequency that is characteristic of the element or compound from
which the light is emitted.  In astronomical applications, light emitted at a
specific frequency from an element such as hydrogen is measured both on
Earth and from the distant star or galaxy.  A comparison of the two
frequencies yields the relative velocity between emitter and observer.
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Light emitted from atoms on distant stars typically is observed to be
shifted to longer wavelengths than are found in experiments performed on
Earth.  Because the light is shifted towards the red end of the visible
spectrum, it is said to be red-shifted.  If the light is shifted to larger
wavelengths by the motion of the stars, then the stars must be moving
away from the Earth.  As a technical aside, light emitted from stars can be
absorbed at specific wavelengths by cool matter surrounding the star but
moving with it.  It is often more accurate to measure the red-shift of the
absorbing wavelengths than to measure the red-shift of a component of
the broad spectrum of emitted wavelengths.

Example 8.2: A nebula in the constellation Hydra has a relative
redshift of 0.20.  Use the Doppler shift expression to find its velocity with
respect to Earth.

By the words "relative red-shift", we mean that the change in  is
equal to 0.20 of the value of .  That is, ( ' − )/  = 0.20.  To find the
relative redshift, we rearrange the Doppler shift equation (8.1) for a
receding source to read

( ' − )/  = v/c.

If ( ' − )/  = 0.20, then

v = 0.20c = 6.0 x 104 km/s.

Thus, the nebula is receding from Earth at a speed of 6.0 x 104 km/s,
rather fast by terrestrial standards.

8.B  Hubble's Law

Using the Doppler shift technique, it is found that distant stars and
galaxies appear to be receding from the Earth, just as in Example 8.2.
Edwin Hubble sought to find a relation between the velocity of recession V
of a distant object and its distance from the Earth R.  In 1929, he found,
within some uncertainty, that

V = HR (8.2)
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where H is a number called the Hubble parameter.  As data from ever
distant galaxies became available in the 1930's, Hubble's law was seen to
apply over larger and larger distance scales.  Clearly, it should not apply at
relatively short distance scales (within the Milky Way, for example) where
there may be non-uniform relative motion of the stars.

In spite of intense efforts to determine the Hubble parameter
accurately, there still is a 50% uncertainty in its value.  This should come
as no surprise, given the difficulty of obtaining accurate distances over the
immense length scales in the universe.  The currently "accepted" value of
the Hubble parameter is in the range 40-100 km s-1 Mpc-1, where Mpc is
shorthand for megaparsec and is equal to 3.26 million light years or 3.09 x
1019 km (1 light-year = 1 ly = 9.46 x 1012 km).  Note that the units of H are
actually [time]-1, and the reason H is quoted in km s-1 Mpc-1 is for
astronomical convenience.

Example 8.3: Estimate the distance to the nebula in Example 8.2 if
H = 70 km s -1 Mpc -1.

In Example 8.2 we estimate that a nebula in the constellation
Hydra is receding from Earth at a velocity of V = 6.0 x 104 km/s.  To find
the distance to the nebula, we rearrange Hubble's law V = HR to read

R = V/H   = 6.0 x 104 / 70 = 8.6 x 102 Mpc.

Using the conversion from Appendix C that 1 pc = 3.26 ly:

R = 3.26 x 8.6 x 102 x 106 = 2.8 x 109 ly.

Thus, the nebula is about 3 x 109 ly, or 1022 km, away from the Earth.

Hubble's law tells us that the further away a star is from us, the
faster it is receding from us.  Hubble's law can be illustrated by
considering the relative motion of positions on the surface of a balloon
while the balloon is being inflated.  A schematic drawing of a balloon is
given in Fig. 8.2, where three points are marked on its surface for
reference.  One can see that as the radius of the balloon increases in
drawings (a) to (c) in the diagram, the distance between points scales
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uniformly.  That is, for all distances between points on the balloon's
surface, the distances Ri in one diagram are related to the distances Ri' in
another diagram by a common scale factor s:

Ri' = sRi. (8.3)

The Ri are the shortest distances between points as measured along the
surface of the balloon.  The change in surface distances between any two
diagrams is

∆Ri = Ri' - Ri = (s - 1)Ri. (8.4)

This means that the velocity of separation between a pair of points is just

Vi = ∆Ri/∆t  = [(s - 1)Ri]/∆t. (8.5)

Finally, since Ri is not a function of time in Eq. (8.5) [it is the set of initial
positions], then we can simplify the equation to read

Vi = Ri [(s - 1)/∆t] = Ri x [common multiplicative factor].   (8.6)

(a)

(b)

(c)

Fig. 8.2 Uniform expansion of a balloon with three positions marked on its
surface.
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In other words, Hubble's law applies to the motion of particles on the
surface of a balloon, or to any system that is expanding according to a scale
transformation like Eq. (8.3), and the Hubble parameter is the common
multiplicative factor in Eq. (8.6).  The balloon example shows another
feature, namely that Hubble's law applies to all points in the system.  At
any point on the balloon's surface it will be found that all other points on
the surface are receding with a Hubble law form for their velocities.  There
is no "special" position on the balloon's surface: a Hubble law for the
velocities will be seen by all observers on the surface.

The balloon surface is a two-dimensional situation, and we live in a
three-dimensional world.  However, the important physical result is that
when we apply the scale transformation Ri → sRi as in Eq. (8.3), a Hubble
law form for the relative motion is obtained.  This result holds in three
dimensions as well as two.  That is, if the universe is expanding according
to Ri → sRi, then observers throughout the universe should observe a
Hubble law form for the motion of distant galaxies.  Just because we on
Earth observe that all distant stars are receding from us does not mean
that the Earth has a special place in the universe.

8.C  The Age of the Universe

Let's summarize the ideas of Secs. 8.A and 8.B.  The distance to a star
can be determined from parallax and other techniques.  The velocity of the
star with respect to the Earth can be found from the red-shift of its light.
It is observed that the further a star or galaxy is from the Earth, the faster
it is moving away from us: V = HR [Hubble's law].  Thus, the universe as a
whole is expanding.  The motion of points on the surface of a balloon
illustrates that observers at any point in the universe obtain a Hubble law
form for the motion of distant galaxies.  The model of the expanding
universe is one component of the Big Bang model.  At earlier times, the
distances between galaxies were much smaller than they are now, and at
future times they will be much greater.

The word "expand" does not imply that the universe has a finite size.
Rather, it means that the density of the universe decreases with time.
What we call the "edge" of the universe are those galaxies and other
objects whose light is only now reaching us billions of years after it was
emitted.  When we look at galaxies ever further away, we look backwards
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in time towards the Big Bang.  There are more galaxies beyond the visible
edge of the universe, and they will become visible to Earth as time evolves.

Example 8.4: Assume that galaxies always have been receding
from each other with the same speed that they are now.  How long ago
were they all at the same point?

Suppose that the galaxies started off very close together and then
separated by a distance R in time t.  For motion at constant velocity,

R = Vt.

The time it took for the galaxies to separate is then

t = R / V = R / (HR) = H  -1

where we have used Hubble's law, V = HR, to eliminate V from the
equation.  The current value of H is 40-100 km s-1 Mpc-1.  Taking the
midvalue of 70 km s-1 Mpc-1 and using 1 Mpc = 3.09 x 1019 km,

H  -1 = 3.09 x 1019 [km/Mpc] / 70 [km s -1/Mpc]

= 4.4 x 1017 s = 14 billion years.

Hence, if the galaxies have always receded from one another with the
same velocities that they have now, then 14 billion years ago the
galaxies were all at the same place.  This calculation is subject to a 50%
uncertainty in the value of H plus the assumption that the velocities of
recession are constant.

Now, it is incorrect to assume that H is a constant, but the results of
Example 8.4 are not far off.  Correcting for the change in H over time, we
find that the age of the universe is approximately (2/3)H -1, rather than
just H -1.  So, based on the observed value of the Hubble parameter, we
predict that the universe is about 7-14 billion years old.  Can we check
this?  Not directly, but

(i) we can estimate the distance to the furthest visible galaxies and
determine how long it would take for light from them to reach us.  This
calculation just uses [distance] = c[time] with c = 3.0 x 108 m/s, the speed
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of light.  The calculated time turns out to be between 10 and 18 billion
years.

(ii) we can determine the age of material from meteors etc., as discussed in
Chap. 6, and find that the solar system is about 4.5 billion years old.
Again, this date is less than our estimated age of the universe, although it
does not provide a very stringent test.

Summary

The distance to a star can be determined from parallax and other
techniques.  The velocity of the star with respect to the Earth can be found
by applying the Doppler effect to the red-shift of the star's light.  A wave
with wavelength  emitted by a source moving at velocity v experiences a
Doppler shift to a new wavelength ' given by Eq. (8.1)

' =  (1 + v/c) [source receding from observer]

' =  (1 - v/c) [source approaching observer]

where c is the speed of the wave as seen by the observer, and where v << c.

It is found that the further a star or galaxy is from the Earth, the
faster it is moving away from us.  This is summarized in Hubble's law, Eq.
(8.2)

V = HR

where V is the recession velocity of the star, R is the distance of the star
from the Earth and H is the Hubble parameter, which has a value of 40 -
100 km s-1 Mpc-1.  Thus, the universe as a whole is expanding.

Motion of points on the surface of a balloon illustrates that observers
at any point in the universe will obtain a Hubble law form for the motion
of distant objects.  The characteristic time for expansion according to
Hubble’s law is H -1, and a somewhat more detailed calculation of the age

of the universe yields (2/3)H -1.
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Further Reading

J. Gribbin, In Search of the Big Bang (Bantam, New York, 1986), Chaps. 1 - 5
[general reading].

S. Hawking, A Brief History of Time (Bantam, New York, 1988), Chaps. 1 -
3.

J. Silk, The Big Bang (Freeman, San Francisco, 1980), Chaps. 1 - 3.

S. Weinberg, The First Three Minutes (Basic, New York, 1977), Chaps. 1 - 3.
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Problems

1. An opera singer on a train is singing high C (f = 512 s-1) when the train
passes by an observer stationary on the ground.  What frequency does the
observer hear if the train is traveling at 140 km/hr (a) towards and (b)
away from the observer?  (Use 342 m/s for the speed of sound in air)

2. A train blows its whistle at a frequency f as it approaches a tunnel.  An
observer standing near the tunnel hears the frequency as 1.02f.  What
frequency does the engineer on the train hear for the echo?

3. Light from a cluster galaxy in Ursa Major shows a 5% fractional change
in wavelength towards the red.  (a) Find the velocity of galaxy.  (b) If the
distance to the galaxy is 700,000,000 light years, find a value for the
Hubble parameter (in km / s-Mpc) and compare it with the accepted range
of values.

4. A cluster nebula in Virgo is estimated to be 78,000,000 light years
away.  What is the relative shift ( ' - )/  of the wavelengths of light
emitted from the cluster as we observe it?

5. With better and better telescopes, we can see further into space or,
equivalently, look further back in time.  What is the apparent velocity of a
star that emitted its light 10 billion years ago if H = 70 km / s-Mpc?  Quote
your answer in terms of c.

6.  Some theories of cosmology favour a value of 50 km / s-Mpc for the
Hubble parameter.  What does this value yield for the age of the universe?

7. Three objects emerging fom an explosion have positions as a function of
time [x(t),y(t)] given by (3t,0), (-6t,0) and (0,5t), where the positions are in
meters and the time in seconds.  Using the relative motion of all three
objects, show that an observer moving with object #1 concludes that the
system obeys a form of Hubble's law.  What is the functional dependence
on time of the associated "Hubble parameter"?  What is the value of this
"Hubble parameter" at t = 2 seconds?
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