MODERN PHYSICS: FROM QUARKS TO GALAXIES

by

David H. Boal Physics Department Simon Fraser University

Fifth Edition, 1996

Preface			5	
1.	Atoms, Nuclei and Particles 7			
	1.A	How we measure what we can't see	8	
	1.B	Cross sections	11	
	1.C	Sizes and masses	16	
	Sum	mary	20	
	Further reading		21	
	Problems		22	
2.	Interactions I			25
	2.A	Four fundamental interactions	25	
	2 .B	Interaction characteristics	28	
	2.C	Particle classifications	32	
	2.D	Antiparticles	38	
	Sum	Summary		
	Further reading		40	
	Problems		41	
3.	Energy, Momentum and Mass		43	
	3.A	Relativistic energy equation	43	
	3.B	Momenta of massless particles	47	
	3.C	Photoelectric effect	50	
	3.D	Wavelengths of massive particles	53	
	Summary		55	
	Further reading		56	
	Problems		57	

4.	Bound Systems			
		Binding energy	61	61
		Binding energy systematics	63	
	4.C		66	
	Sum	mary	70	
	Further reading		71	
	Problems		72	
5.	Interactions II			75
	5.A	Interactions in reactions and decays	75	
	5.B	Conservation laws	77	
	5.C	Quarks and gluons	80	
	5.D	Bosons as carriers of force	84	
	Summary		89	
	Further reading		90	
	Prob	lems	91	
6.	Nuclear Fission and Fusion			95
	6.A	Nuclear binding energies	95	
	6.B	Fission and fusion	98	
	6.C	Decay lifetimes	102	
	6.D	Radioactive dating techniques	107	
	6.E	Binding energy formula (optional)	109	
	Summary		112	
	Further reading		113	
	Prob	lems	114	
7.	A Quick Tour of the Cosmos			119
	7.A	Planets, stars, galaxies and all that	119	
	7.B	Parallax	121	
	7.C	The luminosities and distances of stars	124	
	Summary		126	
	Further reading		127	
	Problems		128	

8.	The Expanding Universe		
	8.A Doppler effect	129	
	8.B Hubble's law8.C The age of the universe	132	
	8	135	
	Summary	137	
	Further reading	138	
	Problems	139	
9.	The Big Bang Model		141
	9.A Temperature and energy	141	
	9.B Photon gas	144	
	9.C Microwave radiation and the Big Bang	146	
	Summary	147	
	Further reading	148	
	Problems	149	
10.	The Feuler Distronge		151
10.	The Early Universe 10.A Universal helium abundance	151	151
	10.B Scenario for the early universe	152	
	10.C Helium synthesis (optional)	157	
	Summary	162	
	Further reading	163	
	Problems	164	
11.	Origin of the Elements		165
	11.A Elemental abundances	165	
	11.B ⁴ He production in stars	168	
	11.C Advanced burning stages	172	
	11.D Explosive nucleosynthesis	175	
	Summary	177	
	Further reading	178	
	Problems	179	
Anne	ndix A: Review of Kinematics		181
· Phe	A.I Kinematics in cartesian coordinates	181	101
	A.II Dynamics in cartesian coordinates	181	
	A.III Circular motion	185	
	Further reading	107	
	rui uici i cauliig	191	

Appendix B: Scattering Experiments			193
B.I	Accelerators	193	
B.II	Target densities	197	
Appendix C: Data Summaries			201
C.I	Units and definitions	201	
C.II	Data tabulations	203	
	Further reading	209	
Appendix D: Answers to Odd-numbered Problems			211
Appendix E: Sample Quiz and Midterm Exam			

Preface

At Simon Fraser University, the first-year physics program for students specializing in engineering and the physical sciences begins with 11 - 13 lectures on modern physics. This material is taught at a level that assumes a mastery of Grade 12 physics, but does not require calculus. The purpose of introducing modern physics at the beginning of the program is two-fold. First, it gives the student an overview of the physical world from the very small to the very large. Second, it lessens the difficulty of teaching calculus-based mechanics before derivatives and integrals are covered in the corequisite mathematics courses.

In a typical 12 lecture sequence, the material labelled "optional" in the Table of Contents of this monograph is not covered. Supplementary non-credit lectures on special relativity are given outside normal class hours in parallel with more conventional material on linear and angular kinematics. As well as worked examples, each chapter contains a summary, a list of references for further reading and a modest selection of problems. The problems are of varying difficulty; the more difficult ones are indicated with an asterisk. Solutions to the odd-numbered problems are given in Appendix D. A sample quiz (given after lecture 5) and midterm exam (given after lecture 12) are provided in Appendix E.

I thank Julian Shillcock for providing most of the solutions in Appendix D. Faculty who have taught Physics 120 recently, including John Bechhoefer, Chris Homes and Howard Trottier, have contributed problem sets and helped revise the notes. My thanks also go to the many students and teaching assistants who made valuable suggestions for improving earlier editions of these notes. Alex Boal drew many of the figures, and Ian Courtney put the problems into computer-based format.

> David Boal Vancouver, April, 1996