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Lecture 12 - The Earth’s rotation

Text: Fowles and Cassiday, Chap. 5
Demo: basketball for the earth, cube for Cartesian frame

A coordinate system sitting with fixed orientation on the Earth’s surface (i.e., having
they-axis pointing towards the North Pole, the x-axis pointing east along a line of
latitude and the z-axis perpendicular to the Earth’s surface) is both a rotating and an
accelerating reference frame.  Hence, fictitious forces are required in this frame to
account for an object’s motion.  The Earth rotates counter-clockwise as seen at North
Pole, so  is up.

The        Plumb        Line    

Our first example is a simple plumb line: a point mass hung from a string.  The
coordinate system is ilustrated below
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re = distance of plumb line from the centre of the Earth

We’ve drawn the Earth as if it has a slight bulge at the equator.  Although we’ve drawn
the tension in the plumb line S  as if it points along z', in fact we don’t know that is the
case yet (we use S instead of T, which is reserved for period).  

This is a particularly simple example because the plumb bob is stationary in the
rotating frame.  How do we describe the bob?

(i)  it is stationary in the rotating frame:  a ' = 0  and v' = 0
(ii)  it sits at the origin of the frame so r'  = 0
(iii)  the Earth’s rotational speed is constant, so d  / dt = 0

Thus, of the expression
ma ' = ma  - 2m xv' - m (d  / dt)xr' - m x( xr') - mAo
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we are left with
0 =  ma  - mAo or just  F = mAo

Now the physical forces F acting on the bob are the true gravitational force mgo toward
the centre of the Earth and  the tension S  in the string.
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The tension balances the locally measured acceleration due to gravity g, which is
different from the true acceleration go.  That is

S  = -mg

=> F = -mg + mgo =mAo (vector equation)
or g = go - Ao

To evaluate the difference between g and go, we use the law of sines
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This length is
mg sin
or
mAo sin

mAo

mg

sin  / mAo = sin  /mg

Ao is the centripetal acceleration (and -Ao is the centrifugal acceleration) given by
Ao =  2  =  2re cos

   --> sin  = m  2resin  cos  / mg

         =  2re sin2  / 2g

As expected,  vanishes at the equator (  = 0) and at poles (2  = 180 degrees).  The
largest value of  is at  = 45 degrees:

 = 2π / (24 x 3600) = 0.000073 = 7.3 x 10-5 radians/sec
re = 6400 km = 6.4 x 106 m
sin  ~  = (7.3 x 10-5)2 • 6.4 x 106 • 1 / (2 x 9.8) = 0.0017 radians

or  ~ 0.0017 x 57.3 = 0.1 of a degree.

Lastly, because the rotational motion affects both the surface of the Earth as well as
the bob, then S  remains perpendicular to the Earth’s surface.  We use this fact in the
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next example, and always subsume Ao with go to allow us to work with the local
acceleration g.  At the equator, Ao = (7.3 x 10-5)2 • 6.4 x 106 = 0.034 m/s2.

Foucault        Pendulum     

Now we take the plumb bob from the previous example and allow it to swing back and
forth.  The Foucault pendulum is simply a mass on a string, but the string is not
restricted to move in a particular plane.

The forces acting on the pendulum bob are

m (d 2r' / dt 2) = mg + S  - 2m xv',

where we have rolled go - Ao into the local acceleration g.  But because the tension S
changes magnitude and direction as the bob swings, it is not always true that S  = -mg.
The local centripetal acceleration term x( xr') has been dropped in favour of the
Coriolis force, which is much more important for this problem [The local force x( xr')
depends upon r' which is with respect to the x'y'z' origin on the surface of the Earth,
whereas Ao depends on re >>> r'].

Choose x', y'  to form a plane tangent to the Earth’s surface, and choose z'  to therefore
lie along g:

Earth

z'y' x' = 0

y' =  cos

z' =  sin

From v' = vx'i' + vy'j' + vz'k', the Cartesian components of xv' are

    xv' = [  cos  (dz' / dt) - sin  (dy' / dt),
 sin  (dx' / dt),

-  cos  (dx' / dt)]

Now the components of the tension S   can be written in terms of the length of the string
and the coordinates of the bob: comparing Sx / S  with x' / L , for example, gives

Sx' = -(x' /L)S.
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Sx’ = -(x’ / L)S    

Sy’ = -(y’ / L)S

Sz’ = +[(L - z' )/ L ]S     

L - z'   

z’     

Note that the - signs are required to obtain the correct orientations.

Returning to our equation for a ', we can write out the x'  and y'  components as
m (d 2x' / dt 2) = -(x' S / L) - 2m  [(dz' / dt) cos  - (dy' / dt) sin ]
m (d 2y' / dt 2) = -(y' S / L) - 2m  (dx' / dt) sin

We make two approximations in the small angle situation, where the motion is nearly
horizontal:
• dz' / dt  ~ 0 corresponding to no vertical motion
• S = mg  (in magnitude) since the pendulum is almost vertical

=> d 2x' / dt 2 = -(g / L) x' + 2   (dy' / dt)
d 2y' / dt 2 = -(g / L) y' - 2   (dx' / dt)

where  =  sin   is the component of   in the z'  direction, i.e., it’s the local vertical
component of .

Somewhat like the qvxB problem of charged particles in a magnetic field, the
equations of motion are now coupled in the x'  and y'  directions.  They can be
uncoupled by defining yet another rotating coordinate system X, Y  which rotates
clockwise around z'  with an angular frequency of -   = -  sin

x' = X cos t + Y sin t

y' = -X sin t + Y cos t
x

x'

y'
y
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Substituting this transformation into the first equation for d 2x'/dt 2:
d 2x'/dt 2 = -(g/L)x' + 2 dy'/dt

becomes
d 2(X cos t + Y sin t)/dt 2 = -(g/L)(X cos t + Y sin t) +

+ 2 d(-X sin t + Y cos t)/dt
or

d/dt{ dX/dt cos t - X  sin t + dY/dt sin t + Y  cos t} =
-(g/L)(X cos t + Y sin t)
+ 2 {-dX/dt sin t - X  cos t + dY/dt cos t - Y  sin t}

Dropping terms of order  2

(d 2X / dt 2 + gX / L) cos t + (d 2Y / dt 2 + gY / L) sin t = 0.

Each of the coefficients of cos t  or sin t  must vanish for arbitrary time, leaving just
the usual simple harmonic motion equations for X, Y :

d 2X / dt 2 + (g / L)X = 0
d 2Y / dt 2 + (g / L)Y = 0

That these equations give the usual SHM (including the period 2π √L/g ) is really not
very surprising.  What is important to note is that the XY coordinates rotate with an
angular frequency  sin  =  with respect to x'y' : that is, the plane of oscillation
rotates with respect to a coordinate system on the Earth’s surface.  Using

 = 2π / T

the period of rotation Tfoucault  is then
Tfoucault = Tearth / sin where Tearth = 24 hours.

Examples:
North pole,  = π/2, T' = 24 hours
Equator,   = 0, Tfoucault = ∞ (no rotation)

 = 45 degrees, Tfoucault = 24 / (1/√2) = (√2)(24) = 34 hours.

The effect was first demonstrated by French physicist Jean Foucault in 1851;
pendulum rotates clockwise in northern hemisphere
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