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Lecture 12 - The Earth’s rotation

Text: Fowles and Cassiday, Chap. 5
Demo: basketball for the earth, cube for Cartesian frame

A coordinate system sitting with fixed orientation on the Earth’s surface (i.e., having
they-axis pointing towards the North Pole, the x-axis pointing east along a line of
latitude and the z-axis perpendicular to the Earth’s surface) is both a rotating and an
accelerating reference frame. Hence, fictitious forces are required in this frame to
account for an object’s motion. The Earth rotates counter-clockwise as seen at North

Pole, so w is up.

The Plumb Line

Our first example is a simple plumb line: a point mass hung from a string. The
coordinate system is ilustrated below
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A = latitude (angle)
p = distance of plumb line from axis of rotation
ro = distance of plumb line from the centre of the Earth

We've drawn the Earth as if it has a slight bulge at the equator. Although we’ve drawn
the tension in the plumb line S as if it points along z', in fact we don’t know that is the
case yet (we use S instead of T, which is reserved for period).

This is a particularly simple example because the plumb bob is stationary in the
rotating frame. How do we describe the bob?

(i) itis stationary in the rotating frame: a'=0 and v' =0

(i) it sits at the origin of the frame sor' =0

(i) the Earth’s rotational speed is constant, so dw / dt=0

Thus, of the expression
ma'=ma - 2mwxv' - m (dow / dt)xr' - mox(wxr’) - mA,
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we are left with
0= ma-mA, orjust F =mA,

Now the physical forces F acting on the bob are the true gravitational force mg, toward
the centre of the Earth and the tension S in the string.

S
Mg o
_on S

mgo F=S +mgo

The tension balances the locally measured acceleration due to gravity g, which is
different from the true acceleration g,. Thatis
S =-mg

= F =-mg +mg, =mA, (vector equation)
or g=0,-A,

To evaluate the difference between g and g,, we use the law of sines

A This length is
mgo (r)nrg sine
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sine / mA, = sin\ /mg

A, is the centripetal acceleration (and -A_ is the centrifugal acceleration) given by
A, =w’p =m’r, COSA

--> sine = mw?r,sink cosA / mg
=w?r, sin2\ /29
As expected, & vanishes at the equator (A = 0) and at poles (2A = 180 degrees). The
largest value of ¢ is at A = 45 degrees:

o =2p / (24 x 3600) = 0.000073 = 7.3 x 10” radians/sec
r, = 6400 km = 6.4 x 10°m

sine ~e=(7.3x10°%+ 6.4 x 10°+ 1/ (2 x 9.8) = 0.0017 radians
ore ~0.0017 x 57.3 = 0.1 of a degree.

Lastly, because the rotational motion affects both the surface of the Earth as well as
the bob, then S remains perpendicular to the Earth’s surface. We use this fact in the
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next example, and always subsume A, with g, to allow us to work with the local
acceleration g. Atthe equator, A, = (7.3 x 10°)% * 6.4 x 10° = 0.034 m/s®.

Foucault Pendulum

Now we take the plumb bob from the previous example and allow it to swing back and
forth. The Foucault pendulum is simply a mass on a string, but the string is not
restricted to move in a particular plane.

The forces acting on the pendulum bob are
m(d?'/dt?’) =mg +S - 2mwxVv',

where we have rolled g, - A, into the local acceleration g. But because the tension S
changes magnitude and direction as the bob swings, it is not always true that S = -mg.

The local centripetal acceleration term wx(wxr') has been dropped in favour of the

Coriolis force, which is much more important for this problem [The local force wx(wxr")
depends upon r' which is with respect to the x'y'z' origin on the surface of the Earth,
whereas A, depends on rg >>>1r'].

Choose x', y' to form a plane tangent to the Earth’s surface, and choose z' to therefore
lie along g:

Wy = 0
Wy =  COSA
wz' = SiNA

From v' = vyi' + vyj' + v K', the Cartesian components of wxv' are

wXV' = [w cosA (dz'/ dt) - wsinA (dy' / dt),
 SinA (dx' / dt),
- cosA (dx' / dt)]

Now the components of the tension S can be written in terms of the length of the string
and the coordinates of the bob: comparing S, /S with x'/ L, for example, gives
S, =-(x"/L)S.
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Sy =-(x' /L)S

Sy =-(' /L)S

S,=+[(L-2')/L]S

Note that the - signs are required to obtain the correct orientations.

Returning to our equation for a', we can write out the X' and y' components as
m (d?x'/ dt?) =-(x' S/ L) - 2mw [(dZ' / dt) cosh - (dy' / dt) sin\]
m (d?y'/dt?) =-(y' S/L) - 2mw (dx' / dt) sinA

We make two approximations in the small angle situation, where the motion is nearly
horizontal:

dz'/ dt ~ 0 corresponding to no vertical motion
S =mg (in magnitude) since the pendulum is almost vertical

=> dX'/dt?=-(g/L)x +2Q (dy'/dt)
d2y' /di2=-(g/L)y - 2Q (dx'/ di)

where Q = sinA is the component of w in the z' direction, i.e., it's the local vertical
component of w.

Somewhat like the qvxB problem of charged particles in a magnetic field, the
equations of motion are now coupled in the x' and y' directions. They can be
uncoupled by defining yet another rotating coordinate system X, Y which rotates

clockwise around z' with an angular frequency of -Q =-w SinA

y

N

X

X' =X cosQt +Y sinQt
y' = -XsinQt +Y cosQt
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Substituting this transformation into the first equation for d 2x'/dt 2:
d?x'/dt? = -(g/L)x" + 2Qdy'/dt
becomes
d?(X cosQt + Y sinQt)/dt? = -(g/L)(X cosQt + Y sinQt) +
+ 2Qd(-X sinQt + Y cosQt)/dt
or
d/dt{ dX/dt cosQt - XQ sinQt + dY/dt sinQt + YQ cosQt} =
-(g/L)(X cosQt + Y sinQt)
+ 2Q{-dX/dt sinQt - XQ cosQt + dY/dt cosQt - YQ sinQt}

Dropping terms of order Q2

(d3X/dt? + gX /L) cosQt+ (d2Y/dt?> +gY /L) sinQt=0.

Each of the coefficients of cosQt or sinQt must vanish for arbitrary time, leaving just

the usual simple harmonic motion equations for X, Y :

d2X/dt2+ (g /L)X =0
d2y /di2+ (g /L)Y =0

That these equations give the usual SHM (including the period 2p QL/g ) is really not
very surprising. What is important to note is that the XY coordinates rotate with an

angular frequency o sinh = Q with respect to x'y' : that is, the plane of oscillation

rotates with respect to a coordinate system on the Earth’s surface. Using

w=2p/T
the period of rotation T,,.,,, IS then

Tioucaurt = Vearn / SINA where T, = 24 hours.
Examples:

North pole, A =p/2, T' = 24 hours
Equator, A =0, Ty, e =¥ (nO rotation)
A = 45 degrees, T, =24/ (1/2) = (C2)(24) = 34 hours.

oucault

The effect was first demonstrated by French physicist Jean Foucault in 1851;

pendulum rotates clockwise in northern hemisphere
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