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Lecture 16 - Many particle systems

What's important:
• many-particle wavefunctions
• bosons and fermions
• symmetry of wavefunction
Text: Gasiorowicz, Chap. 8

So far, we have discussed the motion of a single particle in an external fixed potential;
we have not considered how the potential arises or that it might be associated with
another particle.  Let's now generalize our system to include the motion of several
particles in interaction with each other.  We won't actually implement most of the
concepts presented here until much later in the course, but there are some issues that
will arise in the next several lectures that are best dealt with now:
• many-particle Hamiltonians and wavefunctions
• reduced mass for two-body systems
• bosons and fermions
• symmetrization of the wavefunction.

Many-particle Hamiltonians and wavefunctions

Still working in one dimension, we consider a group of N particles having positions x1 ...
xN.  The classical Hamiltonian for this system is

H = Σi (pi
2/2m) + V(x1 ... xN), (1)

where we take the potential energy to be independent of time.  The usual operator
replacement can be made for the momentum of each particle, yielding

  
H = −h2 1

2mi
i∑

2

xi

2 +V (x1,x2...xN ) (2)

where the particles may each have a different mass according to mi.  Because the
coordinates of each particle are independent, the position-momentum commutator has
the general form

[pi , xj] = -i   h  ij. (3)

The total momentum of the system has the same formal expression as in classical
mechanics,

Ptotal = Σi pi

and is conserved, as estalbished in Gasiorowicz.

The system of particles is described by the wavefunction
(x1 ... xN; t) (4)
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The quantity | |2 gives the probability of finding all N particles at a set of specific
locations ; if one wants the probability of finding particle 1 at location x1, irrespective of
where the remaining particles are located, then one integrates over the positions of all
remaining particles, as in

∫ | (x1 ... xN; t)|2 dx2 ... dxN (5)

If, for some reason, the motion of all the particles is independent, then (x1 ... xN; t) can
be written as a product of single-particle wavefunctions
 (x1 ... xN; t) = (x1) (x2) ... (xN) uncorrelated (6)

and the integration in Eq. (5) is trivial from the orthonormality of the solution set of
wavefunctions.

Two-particle wavefunctions

As was described in PHYS 211, if the potential energy of a two-particle system is a
function only of the separation between the particles, it may be more effective to replace
the positions x1 and x2 by the cm and relative positions:

Xcm = (m1x1 + m2x2) / (m1 + m2)
and (7)

xrel = x1 - x2.

With this replacement, the arguments of the plane wave
k1x1 + k2x2 = KcmXcm + krelxrel, (8)

where the total and relative wavevectors are
Ktotal = k1 + k2 and krel = (m2k1 - m1k2) / (m1 + m2). (9)

The total kinetic energy then becomes
E = (  hKtotal)

2 / 2Mtotal + (  hkrel)
2 / 2µ. (10)

Because the kinetic energy separates cleanly into two pieces, and the potential energy
depends on relative separation, the wavefunction separates into a plane-wave part
describing the cm, and a relative part which satisfies the Schrödinger equation with a
reduced mass:

u(Xcm, xrel) = exp(iKcmXcm) • (x)

  
−

h2

2

2

xrel

2 (xrel ) +V (xrel ) (xrel ) = (xrel ) (11)

where the relevant energy is
 = E - (  hKtotal)

2 / 2Mtotal. (12)
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Bosons and fermions

In Eq. (2), allowance is made for each particle to be different, having a different mass or
other characteristics.  But, at the microscopic level, we know that all members of a given
class of particles are the same - all electrons are indistinguishable, all protons are
indistinguishable etc.  What impact does this have on the wavefunction of a many-
particle system?  Because particles of a given type are indistinguishable, one cannot
say which particle is in what position.  Thus, the wavefunction must be symmetric, or
antisymmetric under exchange of particle label.  That is, for particles 1 and 2, we must
have

(x1 x2 ... xN; t) = ± (x2 x1 ... xN; t) (13)

The choice of ± depends on whether the particle is a boson or fermion.  For those
students who did not take this in first year:

Among their other characteristics like mass and charge, elementary particles are
labeled by a spin quantum number, quantized in units of   h /2, rather like angular
momentum itself.  (There are some important subtleties about the magnitude of the spin
angular momentum to which we return in a few lectures!)  For example, electrons and
protons have spin 1/2 (times   h ) which pions have spin 0 and photons have spin 1.  This
applies even if the particles are otherwise structureless.  Classified according to this
spin label:

spin label = 0, 1, 2,... integers = bosons
spin label = 1/2, 3/2, 5/2,... odd-integer/2 = fermions.

The symmetry of the wavefunction depends on the spin of the identical particles: under
the exchange of particle labels:

bosons are symmetric
fermions are antisymmetric.

What this means for the labels (including the projection of the spin on an axis of
quantization) is  that

more than one boson can have the same set of labels
each fermion must have a unique label.

[If you try to assign the same label to two fermions, the antisymmetry of the
wavefunction forces it to vanish via (x1 x2 ... xN; t) = - (x2 x1 ... xN; t) ].  This is referred
to as the Pauli Principle.

For a wavefunction with two particles, this implies
sym(1,2) = [ (1,2) + (2,1)] / N2S
antisym(1,2) = [ (1,2) - (2,1)] / N2A, (14)
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where the (2 particle) normalization constants N2S and N2A must introduced in order to
keep the complete wavefunction properly normalized; e.g.

∫ | sym(1,2)|2 dx1 dx2 = 1. (15)

It's simple to antisymmetrize a two-particle wavefunction, but the form gets ever more
cumbersome as the number of particles N increases.  If the particles don't interact with
each other, a compact expression for the antisymmetric wavefunction is provided by the
Slater determinant:

u
antisym(1,2,... N ) =

1
N!

uE 1
(x1) uE1

(x2) ... uE1
(xN )

uE2
(x1) uE21

(x2 ) ... uE 2
(xN )

... ... ... ...

uE N
(x1) uEN

(x2) ... uEN
(xN )

(16)

where uEi are single particle wavefunctions.  The completely symmetrized (bosonic)
wavefunctions can be written formally like a determinant, but with all signs positive.

When is antisymmetrization important?

At what length scale is the symmetrization of the wavefunction important?  In our
everyday world, we don't see a correlation between the motion of an electron in a lab at
UBC with one at SFU.  Let's consider the behavior of the normalization constants in Eq.
(14).  The value of the normalization constant NS or NA is determined from

1=
1

NS / A

2 a(x1) b(x2) ± a(x2) b(x1)∫
2
dx1dx2

or

NS / A
2 = a(x1) b(x2 ) ± a(x2) b(x1)∫

2
dx1dx2

= 2 a(x )∫
2
dx b(x)∫

2
dx ± 2 a(x) b (x)dx∫

2

= 2 ± 2 a(x ) b(x )dx∫
2

(17)

where each individual wavefunction is normalized to unity: ∫ | a(x)|2dx = 1.  From the last
line in (17), it is clear that the normalization constant will be changed from √2 only if
there is significant spatial overlap of the two wavefunctions.  Given the many
wavefunctions decay exponentially with space (e.g., the free-particle wavepackets that
we used, or the harmonic oscillator), the so-called overlap integral

| ∫ a(x) b(x)dx |2

will be tiny for macroscopic separations.  Gasiorowicz confirms this conclusion for one-
particle probability distributions as well (p. 155).


