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Lecture 27 - Poly-electron atoms 
 
What's important: 
• helium atom by approximation 
• spin wavefunctions for helium 
Text: Gasiorowicz, Chap. 18 
 
Helium atom 
 
We have now solved the Schrödinger equation for an arbitrary charge Z on the nucleus, 
and examined the specific case where Z = 1, the hydrogen atom.  As long as there is 
only one electron present in the atom, these hydrogen-like solutions are perfectly valid 
for all Z.  The next most complex atom (neutral) after hydrogen is helium. 
 
The relevant coordinates for the helium atom can be defined as 
 
 
 
 
 
 
 
 
The Hamiltonian operator for the atom then has the form: 
 H = (-h2/2me) [∇1

2 + ∇2
2] - 2ke 2/rN1 - 2ke 2/rN2 + ke 2/r12. 

 
 Kinetic energies of  attraction of  repulsion 
 electrons 1 & 2  electrons  between 
 (center of mass  to nucleus  electrons 
 motion factored out) 
 
If the ke 2/r12 term were not present then we would have a separable 2-body problem 
which could be solved analytically.  As it is, the Hamiltonian represents a three-body 
problem that must be solved numerically or by approximation. 
 
A naïve approach to simplifying Hamiltonian is to see what effects the electrons have on 
each other.  By and large, the electrons will not be closeby.  Suppose for the moment 
that they are on opposite sides of the nucleus: 
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Here, the effect of e1 on e2 is to repel it from the nucleus.  Thus, e1 experiences an 
effective coulomb field which can be approximated by 
 -Z' e 2/rN1, 
 
where Z' is less than Z.  Of course, this is only an approximation, and we may have 
trouble determining Z', but at least it allows us to proceed.  So, we write out an 
approximate Hamiltonian Ho as  
 H = (-h2/2me) [∇1

2 + ∇2
2] - Z' ke 2/rN1 - Z' ke 2/rN2. 

 
This Hamiltonian has the classic separation of variables form in the coordinates of 
electron 1 and 2: 
 Ho = ho(1) + ho(2), 
where 
 ho = (-h2/2me) ∇2  - Z' ke 2/r. 
 
Thus, we write the solution for the two-electron wavefunction 
 Hoψo(1,2) = Eoψo(1,2) 
as 
 ψo(1,2) = φo(1)φo(2) 
 
where spin-statistics are ignored for the moment.  The single particle wavefunction 
satisfies  
 hoφo = ε o

 φo, 
and 
 Eo = ε1

o + ε2
o. 

 
The superscripts and subscripts are admittedly a nuisance, but they emphasize that all 
of the energies are only approximate.  Because ho has the form of the single particle 
Schrödinger equation for the Coulomb potential, then φo and ε o can be written out 
immediately: 
 ε1

o = - (Z' 2 / 2n1
2) • (mek 2e 4/h2) 

 ε2
o = - (Z' 2 / 2n2

2) • (mek 2e 4/h2) 
and 
 Eo = - (Z' 2 / 2) • (mek 2e 4/h2) • (1/n1

2 + 1/n2
2). 

 
For numerical purposes, note that the combination 
 mek 2e 4/h2 = 1 Hartree = 27.2 eV  
  = 2EH, gs (ground state energy of the hydrogen atom)  
 
Thus, we see that the ground state energy of the helium atom has 
 n1 = n2 = 1 
 
and 
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 Eo, gs = - (Z' 2 / 2) • (mek 2e 4/h2) • 2 
  = -Z' 2 (mek 2e 4/h2) 
  = 2Z' 2EH, gs. 
 
Now, if the two electron distributions were so spread out that they had minimal 
interaction, we would expect Z' ≅ 2 and 
 Eo, gs ≅ 2 • 22EH, gs 
  = - 8EH, gs = -108.8 eV. 
 
Experimentally, it is observed to take 78.98 eV to strip both electrons from a helium 
atom, so Z' must be less than 2.  Using the observed binding energy to solve for Z' gives 
 2Z' 2 x 13.6 = 78.89 
or 
 Z' = 1.70. 
This is actually not bad, there are models for predicting Z' from wavefunctions and they 
give Z' = 1.69. 
 
 
Spin wavefunctions 
 
Next, we turn our attention to the wavefunctions occupied by the electrons.  Under our 
approximate Hamiltonian, the spatial part of the ground state wavefunction is just the 1s 
orbit familiar from the hydrogen atom.  Because they are fermions, two electrons can 
only be placed into the orbital product state 
 φ1s(1)φ1s(2) 
if the spin wavefunction is antisymmetric.  There are four different products of the 
individual spin wavefunctions 
 α ≡ | 1/2, +1/2>  β ≡ | 1/2, -1/2> 
namely, 
 χa = α(1) α(2)  Sz = +1 
 χb = α(1) β(2)   Sz = 0 
 χc = β(1) α(2)   Sz = 0 
 χd = β(1) β(2)   Sz = -1. 
To determine the appropriate combination, we define the permuation operator 
 P(1,2) 
which exchanges the labels of particles 1 and 2.  Then 
 P(1,2) χa = +χa  
 P(1,2) χb = +χc 
 P(1,2) χc = +χb 
 P(1,2) χd = +χd 
Clearly, χa and χd are symmetric states, which would be OK for pions and photons, but 
not for electrons.  The way to make an antisymmetric state is to take a linear 
combination of χb and χc: 
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 P(1,2) (χb + χc) = +(χb + χc)  
 P(1,2) (χb - χc) = -(χb - χc)  
 
The combination (χb - χc) is correct for the ground state, which can then be written 
 ψgs(1,2) = φ1s(1)φ1s(2) (α(1)β(2) - β(1)α(2) ) / √2, 
 
where the √2 is included to properly normalize the wavefunction. 
 
What are the various angular momenta of the two-particle states? 
 
1.  Orbital angular momentum Each 1s state has l = 0, so the total orbital angular 
momentum Ltot = 0. 
 
2.  Spin angular momentum The combination χb - χc has Stot, z = 0, arising from 
each of the products αβ.  But this doesn't tell us Stot, because even states with Stot > 0 
must still have an Stot, z = 0 projection.  Here, we have Stot = 0 and 1, but the symmetries 
of each projection must be the same for a given Stot.  Thus 
 Stot = 1 α(1) α(2)    Sz = +1 even under P(1,2) 
   (α(1)β(2) + β(1)α(2) ) / √2  Sz = 0  even under P(1,2) 
   β(1) β(2)    Sz = -1  even under P(1,2) 
 
 Stot = 0 (α(1)β(2) - β(1)α(2) ) / √2  Sz = 0  odd under P(1,2) 
 
Thus, the ground state has total spin Stot = 0 which is ODD. 
 
3.  Total angular momentum The total angular momentum J = Ltot + Stot is trivially 0. 
 
 
Spectroscopic notation 
 
Clearly, the addition of angular momentum can be an arduous task, there are many 
possible combination as the number of electrons increases.  A notation commonly used 
is to identify a state by its total S, L and J by 
 2S+1LJ 
where S and J are given their numerical values and L = S P D F in the atomic sense.  
Thus, the helium atom ground state is 
 1S0. 
 


