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Lecture 27 - Poly-electron atoms

What's important.

* helium atom by approximation
* spin wavefunctions for helium
Text. Gasiorowicz, Chap. 18

Helium atom

We have now solved the Schrédinger equation for an arbitrary charge Z on the nucleus,
and examined the specific case where Z = 1, the hydrogen atom. As long as there is
only one electron present in the atom, these hydrogen-like solutions are perfectly valid

for all Z The next most complex atom (neutral) after hydrogen is helium.

The relevant coordinates for the helium atom can be defined as

charge on nucleus
is +2e

The Hamiltonian operator for the atom then has the form:
H= (-n*/2m,) [V + V7] - 2ke®Iny, - 2ke®In, + ke®Ir,,.

Kinetic energies of attraction of repulsion
electrons 1 & 2 electrons between
(center of mass to nucleus electrons

motion factored out)

If the ke ?/r,, term were not present then we would have a separable 2-body problem
which could be solved analytically. As it is, the Hamiltonian represents a three-body
problem that must be solved numerically or by approximation.

A naive approach to simplifying Hamiltonian is to see what effects the electrons have on
each other. By and large, the electrons will not be closeby. Suppose for the moment
that they are on opposite sides of the nucleus:

o o

ey +2e €
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Here, the effect of e, on g, is to repel it from the nucleus. Thus, e, experiences an
effective coulomb field which can be approximated by
'Z’eZ/rN1,

where Z'is less than Z Of course, this is only an approximation, and we may have
trouble determining Z) but at least it allows us to proceed. So, we write out an
approximate Hamiltonian H, as

H=(-n*2m,) [VZ + V7] - Z' ke®Iny, - Z' ke®In,.

This Hamiltonian has the classic separation of variables form in the coordinates of
electron 1 and 2:

H, = hy(1) + hy(2),
where

h, = (-h?/2m,) V? - Z' ke®Ir.

Thus, we write the solution for the two-electron wavefunction

Hoyo(1,2) = E;y,(1,2)
as

Yo(1,2) = ¢5(1)¢(2)

where spin-statistics are ignored for the moment. The single particle wavefunction
satisfies

h0¢0 = 80 ¢O’
and

E,=¢°+¢°.

The superscripts and subscripts are admittedly a nuisance, but they emphasize that all
of the energies are only approximate. Because h, has the form of the single particle
Schrédinger equation for the Coulomb potential, then ¢, and ¢ ° can be written out
immediately:

£°=-(Z2%12n?) « (mk?e*Ih?)

&°=-(Z2"%12n7) « (mk?e*Ih?)
and

E,=-(Z7%12)+ (mk?e*h?) « (1/n? + 1/n,7).

For numerical purposes, note that the combination
m.k*e*/h* = 1 Hartree = 27.2 eV
= 2E, 4 (ground state energy of the hydrogen atom)

Thus, we see that the ground state energy of the helium atom has
n=n,=1

and
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E, 4 =-(Z27%12)* (mk?>e*/n®) « 2
=-Z"% (m,k*e*/h?)
=27"E, 4.

Now, if the two electron distributions were so spread out that they had minimal

interaction, we would expect Z'= 2 and
Eyps=2- 22EH’ o

=-8E, ,=-108.8eV.

Experimentally, it is observed to take 78.98 eV to strip both electrons from a helium
atom, so Z'must be less than 2. Using the observed binding energy to solve for Z'gives
27%x 13.6 =78.89
or
Z'=1.70.
This is actually not bad, there are models for predicting Z' from wavefunctions and they
give Z'=1.69.

Spin wavefunctions

Next, we turn our attention to the wavefunctions occupied by the electrons. Under our
approximate Hamiltonian, the spatial part of the ground state wavefunction is just the 1s
orbit familiar from the hydrogen atom. Because they are fermions, two electrons can
only be placed into the orbital product state

¢1s(1)¢1s(2)
if the spin wavefunction is antisymmetric. There are four different products of the
individual spin wavefunctions

a=11/2, +1/2> p=11/2,-1/2>
namely,
X = a(1) a(2) S, =+1
X% = a(1) B2) S, =0
X = B(1) a(2) S,=0
xa = B(1) B2) S, =-1.
To determine the appropriate combination, we define the permuation operator
P(1,2)

which exchanges the labels of particles 1 and 2. Then

P(1.2) x. = +Xa

P(1 12) Xo = +Xc

P(1 ’2) X = +Xb

P(1,2) x4 = +xq
Clearly, x, and yx, are symmetric states, which would be OK for pions and photons, but
not for electrons. The way to make an antisymmetric state is to take a linear
combination of y, and yx.:
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P(1 ’2) (Xb + Xc) = +(Xb + Xc)
P(1 12) (Xb - Xc) = -(Xb - Xc)

The combination (y, - x.) is correct for the ground state, which can then be written

¥(1,2) = ¢15(1)815(2) (a(1)B(2) - B(1)x(2) ) / V2,
where the V2 is included to properly normalize the wavefunction.
What are the various angular momenta of the two-particle states?

1. Orbital angular momentum Each 1s state has ¢ = 0, so the total orbital angular
momentum L, = 0.

2. Spin angular momentum The combination yx, - x, has S, , = 0, arising from
each of the products af. But this doesn't tell us S,,,, because even states with S, > 0
must still have an S, , = 0 projection. Here, we have S, = 0 and 1, but the symmetries
of each projection must be the same for a given S,. Thus

St =1a(1) a(2) S, = +1 even under P(1,2)
(a(1)B2) + p1)a(2) ) I V2 S,=0 even under P(1,2)
B(1) B(2) S, =-1 even under P(1,2)
S = 0(a(1)B(2) - B(1)a(2) ) 1 V2 S,=0 odd under P(1,2)

Thus, the ground state has total spin S, = 0 which is ODD.

3. Total angular momentum The total angular momentum J= L, + S, is trivially O.

Spectroscopic notation

Clearly, the addition of angular momentum can be an arduous task, there are many
possible combination as the number of electrons increases. A notation commonly used
is to identify a state by its total S, L and J by

2S+1 LJ

where S and J are given their numerical values and L = S P D F in the atomic sense.
Thus, the helium atom ground state is

1

SO-
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