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Lecture 5 - Schrödinger equation for a free particle

What's important:
• Schrödinger equation for a free particle
Text Gasiorowicz, Chap. 3

In the previous lecture, we proposed a candidate function that had many of the
attributes that we desire for a wave packet.  Starting with the momentum distribution,

g(k) = exp(- [k-ko]
2) (not normalized)

we use the transformation for stationary packets
f(x) = ∫-∞

+∞ g(k) exp(ikx) dk = ∫-∞
+∞ exp(- [k-ko]

2) exp(ikx) dk

to obtain
f(x) = exp(-x 2/4  ) • exp(+ikox) (π/ )1/2. (not normalized, stationary)

For moving wavepackets, we started with
f(x,t) = ∫-∞

+∞ g(k) exp(ikx - i t) dk, (1)

and then removed  in favour of k through the relation
 = E/  h  = (  h / 2m) k 2, (2)

which we found from
E =   h (3)

and the de Broglie hypothesis
p =   hk = h /2 . (4)

Our interpretation of f(x) and g(k) requires that the probabilities P(x) and P(p) are
proportional to |f(x)|2 and |g(x)|2, respectively.

We performed these manipulations without much regard to normalization, which we now
restore.  Transformation (1) becomes

  
(x,t) =

1
2πh

dp (p )ei (px −Et )/ h∫ (5)

The relationship can also be written as a partial differential equation.  Start by taking the

time derivative (multiplying by i  h  in anticipation of its effect):

  

ih
t

(x,t ) =
1
2πh

dp (p)ih
t

e i (px −Et )/ h∫
= 1

2πh
dp (p )Eei (px −Et )/ h∫

(6)
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Then, replace E by p 2/2m, and recognize that p can be obtained from the exponential
by taking its derivative via

p -> -i   h  (  / x) (7)

(the minus sign is required because of the form exp(+ipx...) in the exponent.  The steps
from Eq. (6) are

  

ih
t

(x,t ) =
1
2πh

dp (p)
p2

2m
e

i (px −Et )/ h∫

=
1
2πh

dp (p )
1

2m
−ih

x

 
 

 
 

2

e
i( px −Et )/ h∫

= −
h2

2m x

 
 

 
 

2 1
2πh

dp (p )ei (px −Et) /h∫

(8)

Now, the integral is just the wavefunction (x,t), so the differential equation is

  
ih

(x,t )
t

= −
h2

2m

2 (x,t)
x 2 . (9)

This is the Schrödinger equation for a free particle - there is no interaction potential yet.
We did not derive this equation.  Rather, we discussed the behaviour that we wanted
for wavepackets to satisfy the uncertainty principle, then we made the identifications

p =   hk
E =   h .

The form of the wavepackets satisfies the uncertainty relation
∆p ∆x ~   h

as well as, from the form of travelling waves
∆E ∆t ~   h .

Mathematically, it is interesting to note that the LHS of Eq. (9) is linear in time.  This
means that once an initial form of (p) is known, the form of (x,t) at all subsequent
times can be determined by integration.  This is not the same as the second order wave
equation obtained for classical waves in PHYS 211:

2u(x,t )
t 2 = c2

2u(x,t)
x 2 . (10)

Eq. (9) involves complex numbers, and gives rise to a complex function (x,t).  The
complex square of the wavefunction gives the real probability density in position:

P(x,t) = | (x,t)|2, (11)

so that
[probability of particle to be between x and x + dx] = | (x,t)|2 dx. (12)
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The interpretation of | (x,t)|2 as a probability imposes a mathematical condition on (x,t)
itself, namely the function must be square integrable.  This is because the probability of
the particle being somewhere in space must be unity:

∫ P(x,t) dx = ∫ | (x,t)|2 dx = 1. (13)

Lastly, note that even though any overall phase exp(i ) will be removed by Eq. (11), one
should not conclude that phases are unimportant.  Just as classical waves interfere in
different ways, depending on their phase, the same will be true here: an operation like

| 1(x,t) + 2(x,t)|2

can measure the phase difference between 1(x,t) and 2(x,t), just as it can for classical
waves.


