PHYS 385 Lecture 5 - Schrddinger equation for a free particle 5-1

Lecture 5 - Schrodinger equation for a free particle

What's important:
Schrédinger equation for a free patrticle
Text Gasiorowicz, Chap. 3

In the previous lecture, we proposed a candidate function that had many of the
attributes that we desire for a wave packet. Starting with the momentum distribution,
g(k) = exp(-a[k-k,]) (not normalized)

we use the transformation for stationary packets
f(x) = " g(k) exp(ikx) dk = &, exp(-a[k-k,]*) exp(ikx) dk

to obtain
f(x) = exp(-x*/4a. ) » exp(+ik,X) (plo)*2. (not normalized, stationary)

For moving wavepackets, we started with

f(x,t) = 0, g(k) exp(ikx - imt) dk, Q)
and then removed w in favour of k through the relation

o =E/h = (hl2m)k? (2)
which we found from

E=zwh )
and the de Broglie hypothesis

p=rhk=h/2\ (4)

Our interpretation of f(x) and g(k) requires that the probabilities P(x) and P(p) are
proportional to |f(x)[* and |g(X)|?, respectively.

We performed these manipulations without much regard to normalization, which we now
restore. Transformation (1) becomes

P(x1) = %ph o o(p e ™= 5)

The relationship can also be written as a partial differential equation. Start by taking the
time derivative (multiplying by i7 in anticipation of its effect):
) 1 .0
ih—ypX,t)=—/— ih—e
o Y (x,t) \/Z_ph ip (p) o

i(px-Et) n

(6)

i (px-Et) h

= 72% P o(p )Ee
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Then, replace E by p?/2m, and recognize that p can be obtained from the exponential
by taking its derivative via
p->-i i (9/0X) @)

(the minus sign is required because of the form exp(+ipx...) in the exponent. The steps
from Eq. (6) are

m%w(xmﬁﬁ@ip ap) e

i(px-Et) n

- = X - = 0 O i(px - Et)
\/ Oj )2me 0X %o ®
n e 1 (-
= o Gox \/—hoipq)(p)e“’ =

Now, the integral is just the wavefunction y(x,t), so the differential equation is
2
L0t ok azw(>2<,t)_ ©)
ot 2m  ox

This is the Schrodinger equation for a free particle - there is no interaction potential yet.
We did not derive this equation. Rather, we discussed the behaviour that we wanted
for wavepackets to satisfy the uncertainty principle, then we made the identifications
p=rnk
E=rlow.

The form of the wavepackets satisfies the uncertainty relation

DpDx~ A
as well as, from the form of travelling waves
DEDt~ 7.

Mathematically, it is interesting to note that the LHS of Eq. (9) is linear in time. This
means that once an initial form of ¢(p) is known, the form of y(x,t) at all subsequent
times can be determined by integration. This is not the same as the second order wave
equation obtained for classical waves in PHYS 211
2u(x,t) _ 5 a%u(x,t)
> =C —.
ot oX

(10)

Eq. (9) involves complex numbers, and gives rise to a complex function y(x,t). The
complex square of the wavefunction gives the real probability density in position:

P(x.0) = (X0, (11)

so that
[probability of particle to be between x and x + dx] = |[y(x,t)|* dx. (12)
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The interpretation of [y(x,t)|* as a probability imposes a mathematical condition on (x,t)
itself, namely the function must be square integrable. This is because the probability of
the particle being somewhere in space must be unity:

OP(x,t) dx = ofy(x,t)]* dx = 1. (13)

Lastly, note that even though any overall phase exp(i¢) will be removed by Eqg. (11), one
should not conclude that phases are unimportant. Just as classical waves interfere in
different ways, depending on their phase, the same will be true here: an operation like

W2 (x,8) + (XD

can measure the phase difference between y,(x,t) and y,(x,t), just as it can for classical
waves.
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