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Lecture 31 - Kinematics of galaxies 
 
What's Important: 
• Keplerian orbits 
• rotation of galaxies 
• dark matter 
Text: Carroll and Ostlie, Sec. 22.3 
 
Rotation of a galaxy 
 
Galaxies assume a variety of shapes, but certainly one of the more common shapes is a 
spiral or pinwheel: 
 
 
 
 
 
 
 
 
 
The spiral shape suggests that the galaxy is rotating; in all observed galaxies but one, 
the arms trail the motion of the centre (i.e., ω decreases with increasing radius).  For 
example, the rotation of the Milky Way has been measured to be clockwise, as seen 
from the north galactic pole. 
 
The measurement of the galactic motion must take into account the motion of Earth-
bound observers.  It's bad enough that the Earth revolves around its axis, and rotates 
about the Sun.  But the solar plane does not correspond to the galactic plane: 
 
 
 
 
 
 
 
Further, the Sun executes an orbit in and out of the plane, in addition to the motion of 
the spiral arm in which the Sun resides. 
 
Carroll and Ostlie provide a description of the coordinate systems that properly account 
for this many-component motion.  Here, we are just interested in how to set up the 
problem, and the rotational velocity that one obtains. 
 
The local standard of rest (LSR) is a coordinate frame that is instantaneously centered 
at the Sun, and moves in a circle at a distance Ro = 8.0 kpc from the galactic center.  

galactic plane 
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The choice of 8.0 is set by averaging over a number of measurements of the distance to 
the centre, which gives 8.0 ± 0.5 kpc.  The motion of a star with respect to the LSR is 
referred to as its peculiar velocity.  Even the Sun has a peculiar velocity, because it is 
moving away from the galactic plane, and towards the galactic centre. 
 
The tangential component of the Sun's motion with respect to the galactic center is 
about 220 km/s = 2.2 x 105 m/s, about 0.1% of the speed of light.  Suppose that this 
motion were entirely circular and within the galactic plane - what would it tell us about 
the mass of the galaxy? 
 
First, we obtain the period PLSR corresponding to Vtan = 2.2 x 105 m/s: 
 PLSR = 2πRo / Vtan 
  = 2π • 8.0 x 1000 x 3.09 x 1016 / 2.2 x 105 
  = 7.06 x 1015 seconds 
  = 225 million years. 
 
In one sense, the motion is relatively slow at 0.2 billion years, but this is still small 
compared to the age of the galaxy at 10 billion years or more.  If the galaxy had been 
rotating at this rate since its birth, it would have completed 50 revolutions (at the position 
of the Sun - faster towards the centre, slower further out). 
 
Next, we combine Newton's laws of motion and gravity to obtain 
 mac = mVtan

 2/R = GMenclosm /R 2 
or 
 Menclos = RVtan

2 / G. 
 
Replacing R by Ro etc., this yields the numerical value 
 Menclos = (2.2 x 105)2 • 8.0 x 1000 • 3.09 x 1016 / 6.67 x 10-11  
  = 1.79 x 1041kg 
  = 9.0 x 1010 solar masses. 
 
That the mass enclosed within Ro is about 1011 solar masses is at once both comforting 
and disturbing.  Comforting, in that it is the correct order of magnitude, as the mass of 
visible matter in the Milky Way is about 1011 solar masses, as previously mentioned.  
However, not all of this mass lies within Ro: in fact, if the mass were uniformly distributed 
throughout the disk, only (8 / 25)2 = 10% of it would lie within Ro = 8 kpc.  This is our first 
hint that there is perhaps 10 times as much "dark matter" as there is visible matter. 
 
For the Milky Way as a whole, the measured tangential velocities are drawn below.  The 
vertical bars indicate the typical scatter in the data.  The arrow points to the location of 
the Sun, with a rotational speed of about 220 km/s. 
 
Initially, V rises with R like a rigid body: V = ωR.  But after just a few kpc, the distribution 
is flat.  Similar rotational curves obtained by Doppler shift measurements of other 
galaxies show similarly flat functions, and also similar values for the tangential speeds 
of about 200 km/s.  How do we interpret this? 
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Rotational curve for the Milky Way galaxy (redrawn from Clemens, see Carroll and 
Ostlie, p. 956). 
 
Keplerian orbits 
 
As a star circles the centre of the galaxy, its centripetal acceleration is caused by the 
gravitational force from the mass enclosed within the star’s orbit.  If most of the mass 
Mgal is in the galactic nucleus, then a star outside the nucleus would obey 
 GMgal mstar / R 2 = mstar v 2 / R 
 
=>  v = (GMgal / R)1/2 

 
Thus 

Rigid body: V ∝ R 1   
Keplerian:  V ∝ R -1/2  (mass concentrated at core of galaxy) 

 
To obtain a model distribution that generates a flat rotational curve, let's invert the 
problem.  We now assume that the velocity is constant, V = [constant].  Then, from two 
of Newton's laws: 
 mV 2/r = GMrm /r 2, 
 
where Mr is the mass enclosed within radius r, we obtain 
 Mr = (V 2/G)r. 
 
The rate at which Mr changes with r can be found by differentiation to be 

 dM
r

dr
=
V
2

G
.         (31.1) 
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While this equation tells us that the mass rises with r, it does not tell us that the density 
rises with r, or even remains constant.  The mass contained within a three-dimensional 
spherical shell of uniform density ρ is 
 dMr = 4πr 2ρ dr 
 
so that 

dM
r

dr
= 4!"r

2 .        (31.2) 

 
Equating Eqs. (31.1) and (31.2) yields 
 V 2 /G = 4πr 2ρ, 
or 
 ρ(r) = V 2 / 4πGr 2.        (31.3) 
 
This result isn't bad, in the sense that the density falls like a power law in distance. 
However, the fall-off observed in the halo of visible matter, as described previously, is 
 n(r) ∝ r -3.5. 
 
Well, perhaps that's the way it is. A model with uniform distribution in 2Ddisk is worse - 
ρ(r) ∝ r -1.  Now, (31.3) needs some modification to be physically acceptable: 
 
small r We don't want the density to become singular at small r, so we modify the 
parametrized form to read 
 ρ(r) = Co / (a 2 + r 2)   ρ(r) -> Co/a 2 at small r 
      ρ(r) -> Co/r 2 at large r 
 
large r  Even the modified form leads to infinite mass, as it implies dMr/dr is 
constant, according to Eq. (31.2).  Thus, one must impose a cut-off at large r. 
 
A fit to the rotational curve yields (integrate to verify) 
 Co = 4.6 x 108 solar masses / kpc 
 a = 2.8 kpc. 
 
Spiral arms 
 
The rotational speed of stars, as described above, immediately tells us something about 
the nature of the spiral arms.  If the galaxy starts out as a bar: 
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then (unless the bar is rigid!) outer stars have a larger period than inner stars in either 
scenario: 
 constant V:  period = 2πR /V or period ∝ R 1 (not constant ω) 
 Keplerian:  period2 ∝ R 3  or period ∝ R 3/2. 
 
In both cases, the period grows with distance.  Thus, a group of freely orbiting stars 
would evolve from a bar to a trailing arm spiral very fast: 
 
 
 
 
 
 
 
 
 
 
The trouble is that the evolution is too fast, and the arms would wind up after just a few 
revolutions of the inner stars to look like 
 
 
 
 
 
 
 
 
 
 
For example, we showed above that the Sun would have completed 50 revolutions at its 
current speed and position.  This is referred to as the winding problem. 
 
One possible resolution to this problem is the regard the spirals as density waves, 
rather than a sequence of stars in a fixed relative order.  Then, the motion of the stars  
is through the density wave, much like the motion of cars through a traffic jam: 
 
 
 
 
 
The mathematics behind this idea is treated in more detail in Carroll and Ostlie, Sec. 
23.3. 
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