
CHAPTER 11 - PATTERN CLASSIFICATION

As introduced in Chap. 10, neural networks propagate a set of neural activities

ip at time t1 to a new set jp at time t2. The simple networks described in Chap. 10
have a number of restrictive features:
•the number of neurons at t1 and t2 are the same
•information is propagated only in the forward direction: there is no feedback to
neurons at "earlier" times (using the word "time" rather loosely).
There is no particular need for these restrictions, and more general forms for networks
are both allowed by the formalism and needed for the solution of some problems.

In Sec. 11.1, we discuss the network topology needed for pattern classification
and logical operation. A generalized Hebb's rule that includes updates on synaptic
thresholds is introduced in Sec. 11.2. Finally, Sec. 11.3 shows two examples of where
multiple updates are necessary for the network to perform its task, or where Hebb's
learning rule does not produce an accurate network.

11.1 Classification and logic

In the pattern association algorithm and project of Chap. 10, the number of input
neurons and output neurons is the same. But there are many situations in which this
restriction is neither necessary nor desirable. For example, suppose that we want to
identify a pattern as one of the 36 alphanumeric characters A, B, ... 8, 9, and then
classify it as a number or a letter. We could first use a neural net à la Chap. 10 to read
the input pattern (possibly with a few errors in it) and associate it with an alphanumeric
pattern.

First network

Chapter 11 - Pattern classification 156

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

The first network maps the pattern onto one of 36 alphanumeric patterns, each with 5 x
5 = 25 elements ip (i = 1 ... 25 and p = 1 ... 36).

We could then use a second network to classify the pattern as a letter or
number. This network takes an input vector with 25 elements and produces an output
neuron with 1 element (where = +1 for letter and -1 for number).

Second network = letter

= number

Although the classification operation reduces the number of neurons, the same
generic form can be used for the neural network as in Sec. 10.2, albeit with fewer
indices:

h = Σi wi i (11.1)

 = 2 • (h -) - 1. (11.2)

Here, the weights have just one index, since the output neuron has only one element.
Elementary logic operations also involve a reduction in the number of neurons. For
example, the AND operation would have input and output patterns like (where black
indicates the box is TRUE):

Chapter 11 - Pattern classification 157

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

11.2 General Hebb's rule

Hebb's rule provides a means of determining weights and thresholds. Often,
the rule is referred to as a learning or training algorithm, in that it uses known or target
input to produce a network which hopefully has the sought-after characteristics. In its
most general form, the rule reads

wij = N-1 Σp ip jp (11.3)

i = -N-1 Σp ip, (11.4)

where N is the number of elements. In the pattern association problem of Chap. 10,
the thresholds were set equal to zero. If the output is simply a single element p, then
Eqs. (11.3) and (11.4) become

wi = N-1 Σp ip p (11.5)

 = -N-1 Σp p. (11.6)

In some versions of Hebb's rule, the N-1 normalization factors are omitted. In other
formulations, a bias b is added to the potential h, and the result h + b is compared to
zero in the activation function, rather than h being compared to a threshold . Clearly,
b = - , and Hebb's rule for biases (if you want to use them in place of thresholds) is

b = N-1 Σp p. (11.7)

11.3 Caveat emptor

There are many situations in which the simple input/output network cannot
describe a particular operation, or where the network is appropriate, but Hebb's rule
does not give the correct weights and thresholds. We give an example of each.

First, we show that the input/output network does not always work. The
input/output network is also called a single layer network, since the weights act only
once. The classic example is the exclusive-OR operation, also known as XOR. In this
operation, the output is true only if one, and only one, of the inputs is true.

Chapter 11 - Pattern classification 158

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

Diagrammatically,

= TRUE

= FALSE

Representing this situation by a single layer network, there are three unknowns (w1,

w2 and) and four equations. It turns out that the unknowns are overspecified. For
each of the four logic operations in the diagram, the corresponding equations are

 w1 + w2 < (11.8a)

 w1 - w2 > (11.8b)

 -w1 + w2 > (11.8c)

 -w1 - w2 < (11.8d)

Note that Eqs. (11.8a) and (11.8d) form a couplet, as do (11.8b) and (11.8c). A few
minutes of trial-and-error effort shows that the equations cannot be satisfied. Even
with liberal interpretation of the step function at x = 0, the only solution to the equations
is

 w1 = w2 = = 0. (11.9)

This set of weights cannot classify any patterns. Neural networks can be made to
represent XOR, but a second layer of weights must be added.

An example of how Hebb's rule fails to yield the correct network, even where
the network has a proper solution, is the following classification problem:

Chapter 11 - Pattern classification 159

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

= TRUE

= FALSE

According to Hebb's rule, Eq. (11.5) and (11.6):

 w1 = w2 = w3 = (1 - 1 + 1 - 1) / 3 = 0 (11.10a)

 = - (1 - 1 - 1 - 1) / 3 = +2/3. (11.10b)

Application of this set of weights to the first pattern of the set shows that the weights do
not work. Does this problem originate with the assumptions behind the network itself,
or with Hebb's rule? The problem is Hebb's rule, since the solution

 w1 = w2 = w3 = 1/3 (11.11a)

 = +2/3 (11.11b)

correctly reproduces the training data.

References

L. Fausett, Fundamentals of Neural Networks (Prentice-Hall, Englewood Cliffs, NJ,
1994) Chaps. 2-3.

B. Muller and J. Reinhardt, Neural Networks: an Introduction (Springer-Verlag, Berlin,
1990), Chaps. 1-4.

Chapter 11 - Pattern classification 160

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

11.4 Project 11 - Tick-tack-toe

Suppose that you are part of a design team building a game droid - a robot that
can play simple games like tick-tack-toe, or bingo. The games are to be played on
paper, perhaps even in a bingo hall, and the droid must be able to write, and to
recognize writing. Further, the droid must be able to categorize and respond to
patterns. Your task on the tick-tack-toe design team is to implement neural networks
that will:
•recognize handwritten X's and O's (or noughts and crosses) on the game card
•categorize multiple X/O patterns as part of the droid's strategy.
You have already implemented the X/O pattern association in the project of Chap. 10.
In this section, you develop a classification algorithm.

Physical system

The tick-tack-toe game card has the usual 3x3 form

Each element of the grid assumes one of three values (X, O, blank), which is actually a
little more than we wish to consider. So, for this project, we will make the system
binary, such that every square in the 3x3 grid is either black or white.

The task is to classify patterns as winning or losing for either black or white. Since the
algorithm is the same for either color, then you need only code up the algorithm for the
black squares.

There are 29 black-and-white patterns, about 55% of which represent winning
combinations for either black or white. There are 8 fundamental patterns that

Chapter 11 - Pattern classification 161

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

represent a win:

Obviously, more black squares can be added to any of the fundamental patterns, and
the resulting pattern will still "win". In six of the eight patterns shown, both black and
white have complete rows and are therefore "winning" patterns.

Simulation parameters

Although the patterns are 3x3 arrays, it is more convenient to convert them to 9-
component vectors (see Chap. 10):

=

The patterns whose win/lose characteristics are known are denoted by ip, where i is
the 9-component vector index and p is the label of the pattern. The win/lose
characteristic of the pattern (the target) is denoted by t p. For ease of using Hebb's rule
for network training, the bipolar convention +1 / -1 should be used for both the nine
elements of i and the single value of t for each pattern.

The network must take a pattern L i and determine its win/lose characteristic H
through the conventional linear relation for the synaptic potential

h = Σi wiLi (11.12)

Chapter 11 - Pattern classification 162

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

H = sgn(h -), (11.13)

where is an activation threshold. Hebb's learning rule is used to determine the 9
weights and one threshold through

wi = Σp ipt p (11.14)

 = - Σp t p. (11.15)

This set of learning rules does NOT give a set of weights that are 100% accurate, but
it's the best that we can do in the limited time available in this course.

Code

The code consists of many segments of a few lines each. One way of
organizing and writing the code would be something like:

1. Write a routine (test_it) that will take a 9-component pattern ip and determine its

win/lose characteristic t p for one colour, black or white. Use the +1 / -1 convention for
all elements.

2. Write a routine (train_it) that generates all 512 possible patterns ip. As each

pattern is generated, call test_it to find t p. Then, use both ip and t p to find wi and
by Eqs. (11.14) and (11.15).

3. Write a routine (net_it) to take an unknown pattern Li and predict its corresponding
value of t.

4. Generate random patterns, and compute their corresponding t-values by
•test_it to determine t "exactly"
•net_it to predict t from the net.

5. Record the accuracy of the net.

Chapter 11 - Pattern classification 163

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

Report

Your report should include:
•a statement of the problem to be solved
•Hebb's learning rule
•an outline of your code
•an analysis of your code's accuracy
•a copy of your code.

Demo code

The neural network in the demo code was prepared using the steps above in
the Code description. You can manipulate the occupied elements in the 3x3 grid, and
the code tells you whether the "white" player has a winning pattern. While you will find
it tiresome to enter all 512 patterns to determine the accuracy of the network, it is not
difficult to find combinations that the neural network predicts incorrectly.

Chapter 11 - Pattern classification 164

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

