
CHAPTER 2 - MANY-PARTICLE MOTION

The classical motion of particles in a many-body system is well-described by
alternative formulations of mechanics developed by Lagrange and Hamilton, both of
which incorporate the mechanics developed by Newton in the late 1600s.  Our
purpose here is to review a few brief elements of the formalisms, and then discuss
their implementation in computer simulations.  The fundamental descriptions of
particle motion in Lagrange's approach are (generalized) positions and velocities - a
useful approach when part of a particle's interactions with its surroundings is velocity-
dependent, as with drag forces.  In Hamilton's approach, the motion is described in
terms of positions and momenta, useful when the interaction is momentum-dependent.

2.1  Lagrangian formalism

In the formalism developed by Lagrange, particles are characterized by a set of
generalized coordinates and their time derivatives, conventionally represented by the
symbols q i and q˙i.  In the Cartesian coordinate system, positions x and velocities v
could be used for the generalized coordinates and their derivatives.  The time
evolution of qi and q˙i is governed by the Lagrangian function L(qi , q˙i), which is
related to the kinetic energy K and potential energy V via

L = K - V. (2.1)

In Newtonian mechanics, the potential energy is used to generate a set of forces and
accelerations, which can be integrated to give velocities and hence the time evolution
of positions.  In Lagrangian mechanics, the fundamental equation of motion is

(∂L / ∂q˙i) - (∂L / ∂qi) = 0 
d

dt (2.2)

One can see how Eq. (2.2) contains the elements of Newtonian mechanics by
considering a Cartesian system:

•the first term involves the time derivative of q˙i, and hence generates an acceleration
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•the second term involves a derivative of a potential energy with respect to a position,
which corresponds to a force in the Newtonian approach.

Hence, Eq. (2.2) generates the same relation between acceleration and the derivative
of the potential energy as does Newton's law, but without the explicit appearance of a
force.

2.2  Hamiltonian formalism

In Hamilton's approach, the motion of particles is described by a set of
generalized coordinates q i and their corresponding momenta pi.  The time evolution of
qi and pi are then given by two first-order equations

q˙i = ∂H / ∂pi
(2.3)

p˙i = - ∂H / ∂qi.

The function H that appears in Eq. (2.3) is the Hamiltonian of the system, and is equal
to the sum of the kinetic and potential energies

H = K + V. (2.4)

The Hamiltonian is a function of qi and pi.

2.3  Computer-friendly potentials

The equations of motion in both the Hamiltonian and Lagrangian formalisms
contain derivatives of a potential energy.  Although the derivatives are evaluated
analytically before insertion into a computer simulation, they should be chosen so that
they execute rapidly.  A few common choices are given below.

Square well

The square well potential is used extensively in our studies of polymers.  An
attractive square well has a step function form
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V(r) = ∞  for r < a
V(r) = - Vo  for a ≤ r ≤ √2 a (2.5)

V(r) = 0  for r  > √2 a,

where r is the interparticle distance and a is a parameter.  The square well interaction
is excellent for Monte Carlo simulations (see Chap. 4), but deserves special attention if
used in dynamics studies, as pointed out in Sec. 2.3.

Lennard-Jones potential

Although originally used for studies of fluids, this potential has widespread
application.  It has the functional form

V(r) = 4 [(  / r)12 - (  / r)6 ] (2.6)

where the parameters   and   set the energy and length scales of the potential,
respectively.  The r -12-term is repulsive and dominates at small values of /r, providing
a short-range steric repulsion between particles.  However, the r -6-term becomes
increasingly important at modest  / r, and results in an attractive force for r > 21/6 .
Both terms decrease with increasing r, so that the potential ultimately vanishes at large
r.

It is often convenient to break up the potential into separate attractive and
repulsive pieces.  One convention is

       4 [(  / r)12 - (  / r)6 ] + for r < 21/6

Vrep(r) = (2.7a)

       0 for r ≥ 21/6

       - for r < 21/6

Vatt(r)  = (2.7b)

      4 [(  / r)12 - (  / r)6 ] for 21/6  ≤ r

The constant  has been added to the individual terms of the potential so that vrep
always has a derivative greater than or equal to zero (i.e.,  is never attractive), while
vatt always has a derivative less than or equal to zero (i.e., is never repulsive).
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Polymer bonds

An alternative to the square well interaction for elements of a polymer chain is a
continuous function developed by Bishop, Kalos and Frisch.  Their approach uses the
repulsive component of the Lennard-Jones interaction, Eq. (2.7a),

       4 [(  / r)12 - (  / r)6 ] + for r < 21/6

Vrep(r) =

       0 for r ≥ 21/6

(normalized so as to vanish at r = 21/6 ) and adds a tethering term

V(r) = -0.5 kRo2 ln(1 - (r / Ro)2) for 0 ≤ r ≤ Ro
(2.8)

V(r) = ∞ for r > Ro

that restricts r to be less than Ro.  A common choice for the parameters of Eq. (2.8) is

Ro = 1.5 k 2 /  = 30. (2.9)

When differentiated, Eq. (2.8) gives a force that is an even polynomial in r, and is
therefore well-suited for dynamical studies.  However, the presence of the logarithm,
which is slow to execute, makes Eq. (2.8) a poor choice for Monte Carlo work.

2.4 - Molecular dynamics

The integration of Newtonian and Hamiltonian equations of motion is frequently
used in simulations of physical systems.  In situations where the time evolution of a
system is not of interest, such as many systems in equilibrium statistical mechanics,
then the Metropolis Monte Carlo method is often appropriate (see Chap. 4).  However,
where time dependence is of interest (diffusion, for example), then it may be
appropriate to solve the equations of motion and obtain the full dynamics of the
system.  Simulations based upon the dynamical equations of individual particles are
conventionally referred to as Molecular Dynamics, or MD.

Here, we assemble many elements of simulation techniques to form the basis of
the Molecular Dynamics (MD) method.  Some programming issues are specific to MD,
and these form the bulk of this section.
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Initialization

There are several issues to be considered in initializing a system for a
Molecular Dynamics simulation.  There is the need to respect constraints imposed by
the interaction potential between particles, or by the boundary conditions.  For
example, if there are hard core interactions between particles, then the initial state
must not violate the minimum interparticle distances imposed by the hard cores.
Similarly, if the system is confined to a box (even a periodic one), then the particles in
the initial state must be within the box.

Because MD is a dynamical simulation, then initial values must be chosen for
the velocities or momenta.  If the physics of the system is such that the total energy of
the system is conserved, then the initial system must have the desired energy.  This
can be achieved by several different procedures:
•Evaluate the total potential energy once the initial positions have been chosen;
assign the difference between the potential and total energy to the particles' kinetic
energy; distribute the kinetic energy among the particles according to a selected
procedure.
•Assign velocities to particles, then rescale the velocities in an iterative manner until
the system attains the desired total energy.
Interactions between particles, through collisions or smooth potentials, will drive a
given initial distribution towards its equilibrium value.

The relaxation to a thermal distribution of velocities can be speeded somewhat
by choosing the initial velocities from a thermal distribution.  Classical Maxwell-
Boltzmann particles of mass m have a one-dimensional velocity distribution of the form

P(vx)dvx = (m / 2πkBT)1/2 exp(-mvx2/2kBT)dvx (2.10)

where T is the temperature and P(vx)dvx is the probability of finding the particle with a
velocity  between vx and vx + dvx.  Similar distributions apply to the y and z directions.
Note that the probability distribution of Eq. (2.10) is normalized to unity.  Because the
distribution is a normal or Gaussian distribution, velocities can be selected from it
according to the algorithm in Chap. 3.

Another issue to be concerned about in MD is conservation of angular
momentum.  The equations of motion respect conservation of angular momentum, so
that the system will continue to carry any initial angular momentum given to it, within
the accuracy of the integration procedure.  How important this effect is depends upon
the specific situation, but systems with free boundaries are susceptible to
unanticipated side effects from angular momentum conservation.  For example, if
velocities are randomly assigned to vertices on a linear chain, then the chain probably
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has a non-zero angular momentum.  As the motion of the vertices evolves, the chain
will start to spin, perhaps much more rapidly than anticipated.  Hence, it is important to
set the initial angular momentum to its desired value.

Propagation

The starting point for simulating most physical systems is either a Hamiltonian
or Lagrangian function, depending upon the kinematic variables in the problem.
Interactions which are velocity-dependent, such as drag, generally lead one towards
the Lagrangian formulation, while interactions which are momentum-dependent are
more appropriate to the Hamiltonian formulation.  In fact, a large amount of simulation
work in physics involves potential energies that depend only on spatial coordinates,
for which one can go straight to Newton's equations.

Many simple systems have a potential energy that depends only upon the
difference in particle positions, as in

V(r1, r2, r3 ...  rN) = V(r12, r13, rij ... rN-1,N) (2.11)

where r i  is the position vector of the ith particle and rij =  ri  -r j.  A further simplification
that occurs for most model studies is the absence of three-body interactions, so that
the potential can be written as a sum of two-body terms

V(r1, r2, r3, r4, .... rN ) = Σ     Σvij( rij) =  Σ vij(rij)
i = 2   j = 1                     i > j

N           i

(2.12)

The force fi on particle i from all other particles in the system can be computed
from the derivative of the total potential

 fi = -dV(r1, r2, r3, r4 ...  rN) /dri. (2.13)

Where the potential separates into two-body terms as in Eq. (2.12), then the force fi
can be written as a sum of two-body forces fij

fi(ri) = Σ fij( rij)
j≠i (2.14)

each of which can be obtained from
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 fij = -dvij(rij) /drij. (2.15)

The force fij is directed along rij.  One must be careful to keep track of the indices, since
both rij and fij are odd in i and j.

A more convenient way of writing Eq. (2.15), which makes the direction of the
force explicit, is

1    dvij(rij)fij = -      (            ) rij
rij       drij (2.16)

where rij is the magnitude of vector rij.  With some thought, functional forms can be
chosen for vij such that the evaluation of the force involves only even powers of rij, and
hence avoids square roots.

A number of routines for integrating ordinary differential equations are
presented in Chap. 1.  In general, the Euler method should be avoided as it is the least
accurate.  Depending on the problem, the leapfrog or Verlet algorithms may provide
sufficient accuracy without excessive computing time.  If high accuracy is needed, to
conserve total energy of a dynamical system during many updates, for example, then
more compute-intensive algorithms such as the predictor-corrector or fourth-order
Runge-Kutta methods may be required.

Molecular dynamics simulations of more than 104 particles are commonplace,
and can be handled on machines costing less than $5,000.  Large-scale simulations
involving 106 particles remain the domain of specialized machines for now.  Such
simulations demand that the number of calculations per time step be of order N, which
is much less than the order-N2 pairwise interactions.  Means of obtaining efficient code
for many-particle systems are outlined in Chap. 4.  Lastly, periodic boundary
conditions are used to reduce boundary effects in small to moderate-size systems, as
discussed at length in Chap. 6.

Collisions

The equations of motion used in molecular dynamics simulations are most
suitable for continuous differentiable functions.  If the potential energies do not change
rapidly with separation, then simple algorithms can be used to integrate the equations
of motion.  However, there are ways of handling step-function potentials.
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a

Time step i

Time step i+1

In a strictly hard-core interaction like

V(r) = ∞ r ≤ a
V(r) = 0 r > a, (2.17)

the particles undergo uniform motion at constant speed unless they collide.  The
motion between collisions is certainly easy to evaluate from the MD viewpoint!  The
motion of a pair of particles during an elastic collision obeying the potential of Eq.
(2.17) is also easy to determine.  A routine that follows an elastic collision of hard
spheres during an MD update is not difficult to write, and executes fairly rapidly.  For
dense systems, either smaller time steps must be used, or a more complex collision
routine must be developed, to take into account that a given particle may undergo
more than one collision during a time step.

Programming checks

Unless there are external forces or dissipative forces in the system, total energy
is conserved in Molecular Dynamics.  MD integration routines that are not accurate do
not conserve energy on long time scales.  Thus, it is important to check energy
conservation during the propagation of a system, and take corrective steps to restore
the energy to its initial value as needed.

The same is true of angular momentum.  For systems with periodic boundaries,
the effects of angular momentum conservation are not pronounced, but this is not true
for isolated systems.  As mentionned in Sec. 2.1, a convoluted polymer given an initial
angular momentum may ultimately take on the collective shape of a spinning rod after
a number of time steps if angular momentum is conserved.  While the initialization
procedure should set the angular momentum to zero (if desired), it should be verified
that the propagation steps conserve angular momentum.
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2.5 Project 2: Flight to the moon

This project is taken from Martin Siegert's Computational Physics course.  The
flight of a rocket to the Moon is a many-body problem in mechanics, and is suitable to
treatment by Molecular Dynamics.  We consider only the motion of the rocket and the
Moon with respect to the Earth, which represents a subset of the complete many-body
system.

Physical system

The interaction between the objects in the system is their mutual gravitational
attraction

F = -rGm1m2 / r3, (2.18)

where the force has been written in a vector form to emphasize that the direction of the
force is opposite to the displacement vector between the objects.  The masses of the

objects are m1 and m2, while the gravitational constant G has the value 6.67 x 10-11

Nm2/kg2.  In this project, the gravitational effect of the Sun is neglected, as are drag
and tidal forces.  The masses of the Earth and Moon are ME = 5.98 x 1024 kg and

MM = 7.35 x 1022 kg; the mass of the rocket does not enter into the problem (why?).

Simulation parameters

Fix the center of the Earth at the coordinate origin, and take the coordinates of
the Moon at time t = 0 to be (D cos , D sin ), where D = 3.84 x 108 m is the distance
between the Earth and the Moon.  Choose the coordinate system such that the Moon
rotates counter-clockwise.  If the Moon has a circular orbit, then its period T is given by
T2 = 4π2D3/GME, and its angular frequency of rotation is 2 = GME/D3.  Find T and 
consistent with the given value of D.
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Fig. 2.1  Initial configuration of the Earth-Moon-rocket system for a negative value of
the lunar angle .

The system is illustrated in Fig. 2.1 for a negative value of .  The rocket is
launched from a position (RE , 0) on the x-axis, where RE is the radius of the Earth =

6.38 x 106 m (the radius of the Moon, not drawn to scale in Fig. 2.1, is smaller at RM =

1.74 x 106 m).  The initial velocity of the rocket lies along the x- axis at (vo , 0).

The object of the simulation is to find optimal values for  and vo such that the
rocket just passes around the Moon and returns to Earth.  While it would be tempting to
make vo large, in an effort to get to the Moon quickly, in fact the rocket would then
overshoot and may not return to Earth in the lifespan of its occupants.  If vo is too small,
the rocket will not arrive at the Moon, but will be pulled back by the Earth's gravity.  The
minimal value of vo needed for the rocket to reach the Moon, neglecting the
gravitational attraction of the Moon, can be found from the difference in potential
energy at the surface of the Earth RE and the orbital distance of the Moon D:

vo2 / 2 = GME (1/RE - 1/D) (2.19)
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Code

1.  Start with the single-particle MD code that you wrote for Project 1.  Make this into a
three-body code, with forces that are, unfortunately, specific to each pair of particles
because of the masses involved.  Given that there are only three particles, neighbor
lists are unnecessary; given that the force is long-ranged, they are inappropropriate.

2.  With the Earth fixed at the coordinate origin, initialize the system as described in the
section on Simulation parameters.

3.  Assume uniform circular motion for the Moon.  Evolve the motion of the rocket using
one of the integration procedures from Chap. 1.  Try both Verlet and leapfrog
algorithms.  Small step sizes will be required to follow the motion of the rocket as it
passes the Moon.

4.  Follow the motion of the rocket back to the Earth, and make sure that it hits the Earth
(better yet, enters tangentially).

Analysis

1.  Follow the trajectories for different combinations of vo and .

•Fix , then scan through a range of values of vo centered around Eq. (2.19).  Use
steps of 10 m/s in vo.

•Choose a number of values for  between -0.6 and -1.0 radians.

2.  Find the minimal value of vo that takes the rocket to the Moon and back, passing
close to the surface of the Moon.

3.  Find the time required to reach the Moon and for the return trip.

4.  Change the step size to gauge the accuracy of your calculations

Report

Your report should include the following items:
•a few paragraphs stating the problem, and the algorithm used to solve it
•an outline of your code
•a table of values to illustrate the trajectory; display the distances to the Moon and the
Earth, rather than just x,y coordinates
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•a table showing the minimum distance as a function of  vo and ; you don't need to do
this in too fine steps, but 10-20 entries would be appropriate
•your "best" values for vo and 
•a discussion of the numerical accuracy of your code, given the number of steps
required for the integration.  Refer back to results from project 1.  As you change the
step size, by how much do your results change (show the minimum distance as a
function of step size for your best value of vo and )?  Compare the numerical
accuracy that you want (~radius of the Moon) with the distance over which you are
integrating.
•a copy of your code.

Demonstration code

The demonstration code uses the Verlet algorithm to integrate the equations of
motion of the rocket.  The position of the Moon is advanced in a circular orbit with a
period corresponding to D = 3.84 x 108 m.  As the code runs, the elapsed time in
seconds is displayed in the upper left-hand corner of the screen.  The rocket is drawn
in red, the Moon in yellow, and the stationary Earth in green.  The opening page of the
demo allows you to select from three initial lunar angles , and three initial rocket
velocities [near the value of vo in Eq. (2.19)].

1.  Choose  = 0.  As is immediately obvious, this case is unrealistic: the Moon has
long since left the scene by the time that the rocket reaches its furthest distance from
Earth.  However, one can see that small changes in the initial velocity of the rocket
result in large changes in the maximum distance from Earth that it can achieve.  The
values of vo available on the menu differ by only a few percent, but the range of the
rocket changes by more than a factor of two.

2.  Explore other values of .  The initial value of  must be in the range  -0.6 to -0.8
radians in order for the Moon to be in the vicinity of the rocket when it attains the
Moon's orbital radius.  By trying several combinations of vo and , you will see how
sensitive the optimal trajectory is to the launch conditions.
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