
CHAPTER 5 - SYSTEMS UNDER PRESSURE

5.1 Ideal gas law

The quantitative study of gases goes back more than three centuries.  In 1662,
Robert Boyle showed that at a fixed temperature T, the product of the pressure P and
volume V of a specific sample of gas is a constant

PV = const (sample held at fixed T). (5.1)

By the words "specific sample", we mean that a certain amount of gas is placed in a
sealed container, so that the amount of gas in the sample does not change during the
experimental measurement.  Eq. (5.1) reflects the fact that the volume occupied by a
gas decreases when the pressure applied to the gas increases, under the constraints
that both the amount of gas in the sample and its temperature are held constant.  The
situation is illustrated in Fig. 5.1, in which a sample of gas is placed in a sealed
cylinder, one wall of which is a moveable piston:

Low pressure
High pressure

Fig. 5.1.  Sample of gas in a sealed cylinder with a moveable piston.
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Fig. 5.2.  Sample of gas under constant pressure expands when heated.

More than a century later, the temperature-dependence of the volume at fixed
pressure was reported by a number of researchers: Charles (1787), Priestley (1790),
Volta (1793), Dalton (1801) and Gay-Lussac (1802) (see Kauzmann, 1966):

V  ∝ T (sample at fixed P). (5.2)

Eq. (5.2) tells us that a sample of gas held at a fixed pressure increases in volume as it
is heated.

These two observations are combined into an expression known as the ideal
gas law, which we will write in the form

PV = NkBT, (5.3)

where N is the number of molecules in the gas sample, and kB is Boltzmann's constant
(see Chap. 4).  It is more conventional to express the ideal gas law in terms of the
number of moles, rather than the number of molecules, but the form we choose only
requires notation from Chap. 4.

The ideal gas law is obeyed very well by dilute gases (V / N is large), and
becomes less accurate as the gas becomes more dense (we pursue this non-ideal
behavior in Chap. 6).  It is important to note that Eq. (5.3) shows no dependence on the
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molecular species (H2 vs. CCl4) or mass (H2 vs. I2): all gases obey the same equation.
Both the functional form of Eq. (5.3), and its universality, can be obtained by
considering the motion of an ensemble of point particles at finite temperature.  The
molecular picture of gases was laid out by Bernoulli in 1738, then revised,
rediscovered and completed over the following 150 years by Herapath (1821),
Waterston (1845), Joule (1848), Rankin and Kronig (1856), Clausius (1857) and
Maxwell and Boltzmann (see Kauzmann, 1966).

The basic form of the ideal gas equation is straightforward to obtain.  Consider
first, the one-dimensional motion of a point particle in a box bounded by two hard
walls, as in Fig. 5.3.  The particle travels at a constant speed ux in the x-direction, and
changes only its direction, not its speed, when it collides with a wall.  It takes a time t
for the particle to traverse the box, collide with one wall, traverse the box in the
opposite direction, collide with the other wall, and return to its original position.  If the
distance between the walls is Lx, then

t = 2Lx / ux. (5.4)

When the particle collides with a wall, it reverses its velocity and its momentum; for
example, when it hits the right-hand wall, its momentum changes from mux to -mux,
where m is the mass of the particle.  Hence, the magnitude of the change in
momentum when it hits a wall is mux - (-mux) = 2mux.

The particle exerts a force on the wall during its collision.  As you recall from first
year mechanics, force is a rate of change of momentum, so that the average force
exerted by the particle on the wall is

ux

Lx

Fig. 5.3.  Particle moving at constant speed between hard walls in one dimension.
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[average force] = [change in momentum] / [change in time]
= 2mux / (2Lx /ux)

= mux2 /Lx. (5.5)

Of course, the force exerted by the particle on the wall has the same magnitude as the
force exerted by the wall on the particle.

Now place the particle in a three-dimensional box, with sides Lx, Ly, and Lz,
although the particle still moves only in the x-direction with constant speed.  The
average force exerted by the particle on the end wall is still given by Eq. (5.5).  The
pressure P felt by the wall is just the average force divided by the area of the wall.
Since the area of the wall at each end of the x-direction is Ly • Lz, then

P = [average force] / [area of wall]
= (mux2 /Lx) / (LyLz)

= mux2 / (LxLyLz) (5.6)

But the volume of the box is just

V = LxLyLz, (5.7)

so that Eq. (6A.6) can be rewritten as

PV = mux2. (5.8)

One can see that the specific values of Lx, Ly, and Lz do not enter into Eq. (5.8): what
matters is the total volume V.

ux

Lx

Ly

Lz

Fig. 5.4.  Particle moving in a three-dimensional box.
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We can extend Eq. (5.8) by considering a system of N particles moving in the x-
direction, such that each particle has a velocity (ui,x, 0, 0), where each ui,x may be
different.  Then the total pressure exerted on the end walls by all N particles is

PV = m∑iui,x2

= Nm {(1/N)∑iui,x2}

or

PV = Nm <ux2> (5.9)

where

<ux2> = (1/N)∑iui,x2 (5.10)

is the mean square velocity in the x-direction.

Finally, we allow the particles to move in the x, y, or z directions.  Then Eq. (5.9)
still holds except that the pressure is now experienced by all walls.  Further, if the
motion of the particles is equivalent in all directions, then

<ux2> = <uy2> = <uz2> (5.11)

and

<u2> = <ux2 +uy2 + uz2> = <ux2> + <uy2> + <uz2>

 = 3<ux2> =  3<uy2> = 3<uz2>. (5.12)

Thus, Eq. (5.9) has the general form

PV = Nm <u2>/3. (5.13)

We have assumed no particular form for the distribution of particle velocities, except
that they be equivalent in all three cartesian directions.  Although we assumed that the
particles travelled in straight lines without collisions, even that assumption can now be
dropped without changing the form of Eq. (5.13).

Although there is no explicit temperature dependence to the right-hand side of
Eq. (5.13), there is implicit temperature dependence, since the mean speed of the
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particles should increase with temperature.  The dependence of <ux2> on temperature
at equilibrium can be obtained using the Boltzmann weight from Chap. 4.  Since the
system is an ensemble of point particles in a box of fixed geometry, the energy of a
given particle is simply its kinetic energy

K = m(ux2 +uy2 + uz2) / 2. (5.14)

Thus, the mean square value of ux2 is, using the Boltzmann weight,

<ux2> = 
∫ ux2 exp{-m(ux2 +uy2 + uz2) / (2kBT) } dux duy duz

∫ exp{-m(ux2 +uy2 + uz2) / (2kBT) } dux duy duz

= 
∫ ux2 exp{-mux2 / (2kBT)} dux

∫ exp{-mux2 / (2kBT)} dux

= (2kBT / m) 
∫ z2 exp(-z2)dz

∫ exp(-z2)dz

According to Eq. (4.20), the ratio of the integrals is equal to 1/2.  Thus,

<ux2> = kBT / m,

or

m<ux2>/2 = kBT / 2. (5.15)

Finally, Eq. (5.15) can be substituted into Eq. (5.9) to give

PV = NkBT . (5.16)

5.2 NPT and NVT ensembles

One can choose among many different ensembles for performing simulation
studies.  For example, in previous sections we presented algorithms for ensembles
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with fixed total energy E (MD) or fixed temperature T (MC).  Only one member of the E,
T pair can be held constant.  In general, the ensembles are described by three fixed
quantities:
•fixed particle number N vs. fixed chemical potential 
•fixed energy E vs. fixed temperature T
•fixed volume V vs. fixed pressure P.
All of the systems that we investigate in this course have fixed particle number N.
Further, all of the systems that we study with Monte Carlo methods have fixed
temperature T.  The two ensembles of interest to us are then NVT and NPT.

At fixed temperature, the energy of a system is not constant, as shown in Fig.
5.5.  The Boltzmann factor exp(- E) provides the correct weighting to generate an
ensemble of configurations at constant temperature, refered to as an isothermal
ensemble. Similarly, at fixed pressure, the volume of a system is not constant, as
illustrated in Fig. 5.6.  Depending on the system of interest, it may be more useful to
work at fixed volume (called the NVT-ensemble if N, V, and T are all held constant) or
at fixed pressure (called the isobaric isothermal  ensemble, or NPT-ensemble if N, P,
and T are all held constant).

The algorithm for the NVT ensemble requires nothing more than the Boltzmann
weight for energy, since the volume and particle number are fixed at some user-
defined values.  Of course, a means must be developed for determining the pressure
from the configurations.  The NPT ensemble, on the other hand, has a fluctuating
volume that must be sampled correctly.  However, the expectations of V or V2 are
trivial to obtain from the NPT ensemble.

Time

Energy

Fig. 5.5.  The energy is not constant in a system at fixed temperature.
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Time

Volume

Fig. 5.6.  The volume is not constant in a system at fixed pressure.

In the NPT ensemble, the Boltzmann weight must be generalized to include the
work and change in entropy associated with a change in volume.  Given the non-
specific prerequisites for this course, we will not immediately invoke the Gibbs free
energy as the relevant measure of energy.  Rather, we reason our way through the
behavior of the system to obtain the generalized algorithm.

Pressure term

When the system volume changes at constant pressure, work is done by/on the
system.  Consider a sample of gas held at constant temperature and pressure in a
sealed cylinder.  If the volume of the gas increases, then work is done on the piston,
since the force applied to the piston has moved it through a distance.  The situation is
illustrated in Fig. 5.7.  The force on the face of the piston is PA, where A is the area of
the piston.  This force acts through a distance D, resulting in a work of

[work] = [force] x [distance]
= PA • D
= P ∆V, (5.17)
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Change in
volume = DA

Force on piston = PA

Cross sectional area = A

Before

After

Change in 
position = D

Fig. 5.7.  Work associated with the change in volume changes the (free) energy of the
system at constant pressure.

where ∆V is the change in volume.  Thus, the total energy of the system is not just the
interaction energy E between particles, but also includes P ∆V, the work done by the
gas.  The quantity E + PV represents part of what is called the free energy of the
system.  But clearly E + PV cannot be the whole story, or else any small pressure
applied to a system of non-interacting particles would drive the system to zero volume,
which is the minimum value of E + PV for P > 0 and E = 0.

Entropy term

The reason why a gas of non-interacting particles does not collapse under
pressure is because of its entropy S

S = kB lnΩ, (5.18)

where kB is the inevitable Boltzmann's constant and Ω is the number of configurations
available to the system.  As the volume of a gas decreases, so does the number of
positions that a particle can occupy in that volume.  Hence, if the number of
configurations that a particle can assume decreases, then so too must S according to
Eq. (5.18).  The entropic contribution enters into the total free energy, G, as

G = E + PV - TS. (5.19)
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Hence, a decrease in the entropy results in an increase in the free energy.  While
small volumes may be favored by the PV term in the free energy, they are opposed by
the entropic term TS which favors large S.

How do we evaluate the free energy in an algorithm?  One can consider many
situations, of which two are:

Algorithm: single particle moves

Suppose that one has an enclosed surface (i.e., a bag), subject to pressure:

First, discretize the surface of the bag by creating a connected surface of plaquettes
(e.g., triangles).  In turn, move each vertex that defines the plaquettes, and at each
move of a single vertex, evaluate ∆(E + PV).

Algorithm: system rescaling

This method, developed by Wood (1968), is very useful for systems with periodic
boundary conditions (see Chap. 6 and also Allen and Tildesley, 1987).  Consider a
system of particles placed in a box:

We denote the positions by x and the length scale of the box by L.  If the positions of all
of the particles and the boundaries of the box are rescaled simultaneously to new
values
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x  → Rx (5.20)
L → RL

where R represents a common scale factor, then there is a change in volume  ∆V and
a change in entropy ∆S.

The change in volume and its contribution to ∆G through P∆V is obvious.  The change
in the entropy is more subtle, and is best obtained through partition functions, which
are not covered in the prerequisites for this course.  The following rudimentary
derivation will have to suffice.

The number of configurations available to a single particle is proportional to the
volume occupied by the particle: the larger the volume, the larger the number of
positions that the particle can occupy.  For particle #1, let's write the number of
configurations as

Ω1 = CV, (5.21)

where C is a proportionality constant.  Eq. (5.21) applies to each particle in the system
on an individual level.  We now introduce a second particle into the system, and count
the available configurations.  The number of configurations in the system of particles
#1 and #2, is proportional to the product of Ω1 and Ω2: that is, for each configuration of

particle #1 there are Ω2 possible configurations of particle #2, and hence there are

Ω1•Ω2 configurations in total for the two particles.  Repeating this argument, the total
number of configurations for the entire system of N particles is then

Ωtot = Ω1• Ω2 • Ω3 • ... • ΩN

∝ V • V • V ... • V = VN. (5.22)
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Since S = kB lnΩ, then

∆S = kB lnVnewN - kB lnVoldN = kBN (lnVnew - lnVold).

The constant C has disappeared from ∆S because of the logarithms.  Hence

T∆S = kBTN ln(Vnew / Vold) (5.23a)

T∆S = N ln(Vnew / Vold). (5.23b)

The procedure for the rescaling algorithm is then the following:

1.  Make trial moves on the particle positions as usual; evaluate ∆E for each move;
accept or reject the move according to exp(- ∆E).

2.  Make a trial rescale of the particle positions and box size; evaluate ∆E for the
system associated with the rescaling, T∆S from Eq. (5.23b) and P∆V; then accept or
reject the rescaling according to exp(- ∆E + T∆S - P∆V).

3.  Note that each Cartesian direction should be scaled by a different factor.

The interested reader may wish to derive the ideal gas equation by minimizing
the free energy E + PV - TkB lnΩ with respect to volume using Eq. (5.22) for Ωtot.
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5.3 Project 5 - Ideal gas at constant pressure

A system of non-interacting particles in a box has a simple computational
description.  In fact, it is not even necessary to include particles in the simulation in
order to obtain the equation of state (volume as a function of pressure) of the system:
all that is needed is the box rescaling algorithm.  However, to make life easier for
writing Project 6, point-like particles are included in Project 5.

Physical system

A system of point-like, non-interacting particles are placed in a rectangular
prism (opposite faces are identical rectangles) in three-dimensional space.  The
particles are allowed to move within the prism

The system is held at fixed pressure, not fixed volume, so the box sides fluctuate in
length.

Lz

Ly

Lx

Simulation parameters

A rectangular prism has three sides of inequivalent length, which we define as
Lx, Ly and Lz.  In this project, no length scale is provided by the particles, since they
are point-like.  Similarly, no energy scale is provided by the interparticle potential
energy, since there isn't one.  But we know from the ideal gas law that
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PV = NkBT, (5.24)

so that

[density] = N / V = P / kBT = P. (5.25)

In other words, the length scale for the volume is provided by ( P)-1/3.

Let us belabor the issue of units, since it is a source of some confusion for those
new to computer simulations.  Perhaps because a computer deals with numbers, it is
tempting, but wrong, to assume that the computer knows what units are being used in
a code.  One might say: I'll put the temperature equal to 6, the pressure equal to 2, and
measure the volume of the system.  Of course the code will generate a number, but
with what units?  For the ideal gas problem, we see that the only combination of
physical observables that generates a length unit is ( P)-1/3.  Thus, in the ideal gas
problem, the computer does not use MKSA or cgs or imperial length units, but rather
( P)-1/3.  If there were a hard core interaction between the particles, the situation
would be different, and the hard core radius would provide a length unit.

The physical behavior of the point-particle system does not depend upon the
numerical value of P.  All that one does in changing the value of P, is change the
units.  For a fixed N, your code need be run at only one value of P.  But just to make
sure it's working properly, run it at several values and confirm that the density is
always equal to P.

Code

1.  Choose a value of N equal to 216.

2.  Choose three values of P within the range 1 to 10, even though you know that all
values are really the same value.

3.  Set up the rectangular prism with sides Lx, Ly and Lz.  For computational
convenience, place the center of the prism at the origin.

4.  Make trial moves on the particle positions; do not accept moves in which a particle
passes outside of the prism.  Neglect particle interactions.  The P-V relation doesn't
depend upon the particles being present in this case, so you can turn off the particle

Chapter 5 - Systems under pressure 75

©1997 by David Boal, Simon Fraser University.  All rights reserved; further resale or copying is strictly prohibited.



movement part of your code to speed things up.  But getting the particle movement
section of your code working now will shorten the time needed to write the code for
project 6.

5.  Rescale the box lengths Lx, Ly and Lz independently.  On each trial move for the

box lengths, the volume changes by an amount ∆V.  Accept the move according to the
Boltzmann weight associated with P∆V and the entropic term, Eq. (5.23b).

6.  Rescale the box for every sweep over the particle positions. Perform N sweeps
between each configuration that you keep for data analysis.  Use at least 300
configurations to construct the ensemble averages.

Analysis

1.  Allow the system to relax before taking data, then calculate the ensemble averages
<V> and <V2>.

2.  Find the density, and compare it with  P.

3.  The volume compression modulus at constant temperature is

KV-1 = - (∂V / ∂P) / V. (5.26)

That is, the more rapidly V changes with P, the more "compressible" the system is and
the smaller KV is.  For an ideal gas, clearly

KV = P. (5.27)

Verify this analytically.  Compare it with the computational determination of KV from the
slope of a lnV vs. P plot:

KV-1 = - ∂lnV / ∂P. (5.28)

and the fluctuation-dissipation theorem

( KV)-1 = [<V2> - <V>2] / <V>. (5.29)

Chapter 5 - Systems under pressure 76

©1997 by David Boal, Simon Fraser University.  All rights reserved; further resale or copying is strictly prohibited.



Report

Your report should incude the following items:

•a statement of the ideal gas equation and its compression modulus
•a (page or more) description of the NPT ensemble and the basis of the algorithm that
you use for it
•a written outline of your code
•your data analysis
•an estimate of the uncertainties in your results (e.g., break up your data set into two
parts and see how the results change); estimate the error in KV  from Eq. (5.27).
•a copy of your code

Demonstration code

The demonstration code for this project is a two-dimensional gas.  This just
means that the pressure is an energy per unit area ( ), rather than an energy per unit
volume (P).  A system of point particles in two dimensions obeys the same form of
ideal gas law as particles in three dimensions,

A = N / kBT or A = N (5.30)

where  is the surface pressure, and A is the area.

The demonstration code displays the length scale

[length] = (N / )1/2, (5.31)

indicated by the red bar near the top of the window.  This length scale is fixed at a
certain number of pixels in the demo, and does not change with N.  If you try running
the code at different N, you will see that, although both the size and the shape of the
box vary in the ensemble, the ensemble averages show no particular N - dependence.

Particles number 1 and N are given special colors in the demo code, so that
their diffusion rate through the system can be seen visually.
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