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CHAPTER 8 - DATA ANALYSIS

We all know that a single experimental measurement in physics does not yield
a result that is reproducible to arbitrary accuracy by another single measurement. At
the operational level, the equipment, its settings and its operators are not identical in
successive experiments, so that successive measurements may produce similar, but
not identical results. At the fundamental level, quantum mechanics reminds us that the
measurement process itself affects the system being measured. Hence, a sequence of
experiments produces a distribution of values for the observable being measured.
Further, the values predicted for the measurements also are subject to uncertainties,
both through approximations made in analytical calculations and in the limited
accuracy of numerical methods.

In this section, we address several questions about the analysis of distributions
of numbers, such as are found in data sets. In particular, how do we
scharacterize the central value of a distribution?
eassess the reproducibility of a distribution?
einterpret the distribution by means of functional representations?
Each of these tasks is dealt with in Secs. 8.3-8.7. But in order to understand the
methodology, we want to have a data set whose properties are known theoretically. In
Secs. 8.1-8.2, we use the ideal random walk to provide such a data set. Finally, we
analyse data from the random walk in Sec. 8.8.

8.1 Ensemble averages

In Chap. 3, we concentrated on the end-to-end displacement of an ideal chain
or random walk. "ldeal" means that the walk is allowed to intersect itself or, for a walk
in one dimension, reverse its direction. In a given sample of configurations, there will
be a distribution of end-to-end displacements rege, as shown in Fig. 8.1. Each of the
sample configurations in Fig. 8.1 has a different value for the magnitude of ree; of
course, there are many more possibilities than are present in the figure. From the
ensemble of configurations, we can construct a variety of observables that reflect the
"center" of the distribution. One such observable is the ensemble average or mean
(see Sec. 8.3 for others). First, a quick review of a result from Chap. 3.
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lee

ree ree
Fig. 8.1 Sample of random walks with four steps on a two-dimensional lattice.

Since ree is the vector sum of the individual steps a;,

fee = Siaj, 8.1)

then the ensemble average <rege?> over all chains with the same number of steps
Nstep. IS

<leel> = Si Sj <aja>. (8.2)

If steps aj and aj have random orientations, then the ensemble average of aj- aj should
vanish fori?t j:

<aj-ap>=0 fori?j. (8.3)

The only non-zero terms on the right-hand side of Eq. (8.2) have i =], and are equal to
a2. Thus, for an ideal random walk

<ree2> = Nstepaz. (84)

We use Nstep in Eq. (8.4), rather than N as used previously, to reduce the notational
ambiguities in the project of Sec. 8.8.

8.2 Distribution of random walks

For the random walk on a lattice, the distribution of ree can be denumerated

exactly. Consider an ideal walk in 1 dimension, in which the steps all have equal
length a. All of the allowed configurations with two steps are shown in Fig. 8.2. The
figure shows the order in which the steps are made, and also the end-to-end
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STEPS ree/a
RR —>—> +2
RL — 0
LR < 0
LL —e— 2

Fig. 8.2 Allowed configurations for a one-dimensional random walk with two steps of
fixed length a.

displacement once the two-step walk is complete. We see that one walk has ree/a = 2,
two walks have ree/a = 0, and one walk has ree/a = -2. For larger number of steps, the
distributions look like:

reefla = -4 -3 -2 -1 0 1 2 3 4

Nstep =2 1 2 1
Nstep =3 1 3 3 1
Nstep =4 1 4 6 4 1

The number of configurations for a given ree/a have a familiar form: the are the

binomial coefficients. A few minutes' thought about how to count the configurations in
an ideal n-step walk in one dimension will convince one that the distribution of ree/a is

indeed a binomial distribution (R + L)". For example, with Nstep = 4

Steps RRRR RRRL RRLL RLLL LLLL
RRLR RLRL LRLL
RLRR LRRL LLRL
LRRR LRLR LLLR
LLRR
RLLR
(R+1L)3 RRRR RRRL RRLL RLLL LLLL
RRLR RLRL LRLL
RLRR LRRL LLRL
LRRR LRLR LLLR
LLRR
RLLR
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Number of configurations

Fig. 8.3 Distribution of ree/a for a 4-step random walk.

As can be seen from the Nstep = 4 data (schematically from the explicit
configurations displayed above, or graphically in Fig. 8.3), the distribution of ree/a is
symmetric around zero, and falls off monotonically as |ree/al] becomes large. As the

number of steps becomes very large, the distribution becomes Gaussian or normal. In
the continuum limit of large Nstep, one is usually less concerned with the number of

discrete states at a specific ree/a, than with the probability of finding the system in a
given range of ree/a.

To make the notation a little less cumbersome, we replace ree/a by the variable
X. The probability of finding a walk with displacement between x and x + dx is just

P(x)dx = (2pw?)-1/2 exp(-x2/2w?2) dx (8.5)
where P(x) is the probability density (probability per unit length) and w is

w2 = Ngtepa?/d. (8.6)
We use o to represent the width, rather than the conventional o introduced earlier
(Chap. 3), since the project of Sec. 8.8 involves the determination of the standard

deviation (o) and standard error (og) of w, as found from small samples. The quantity o

is dimension-dependent, and d is the spatial dimension in which the walk is
embedded. For one-dimensional walks, obviously d = 1.
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The distribution in Eqg. (8.6) assumes that the chain starts at the origin, and is
normalized to unity

Ay x)dx = 1. (8.7)

The distribution P(x) is both centred at, and symmetric about, x = 0, so that the
expectation of (x - <x>)2 is

<(x-<x>)?>=w?, (8.8)

as shown earlier in Chap. 3.

8.3 Mean, median and mode

Repeated measurement yields a distribution of values for the quantity being
measured. Consider two possible distributions of experimental data shown in Fig. 8.4,
which displays the fraction of measurements that fall into each range of an observable
x. In part (a) of Fig. 8.4, the observed values of x are spread relatively uniformly over a
range of x: the likelihood that a measurement yields a specific value of x does not
depend strongly on x. The situation in part (b) is different: some values of x are
frequently obtained by the measurements, while other values of x are rarely

Fraction Fraction

A A

(a) (b)

Fig. 8.4 Two different distributions of x, a measured observable. The data are
collected into discrete ranges (or bins) of x, and the histograms show the fraction of
measurements in which the value of x falls into a particular bin.
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obtained. Both distributions are equally important in their own right, but we are often
more interested in situations corresponding to part (b): we want to be able to predict
that an observable will lie in a certain range under specified experimental conditions.

In this section, we deal with several aspects of data analysis:
*What is a good measure of the central value of a distribution?
*How can we determine whether two independently obtained data sets are consistent
with each other?
*With what likelihood would a hypothetical description of the measurement produce
the measured data?

There are several estimators of the central value of a distribution. One of the
most common estimators is the mean, which is used extensively throughout these
notes. Denoting the mean value of x by <x>, then

<x>=N1S (8.9)

J=1,N

for a discrete distribution of N elements, labelled by xj, or

<x>= QPx)dx / QP(x)dx (8.10)

for a continuous distribution P(x). The mean is the first moment of the distribution.
While this is a useful estimator for distributions such as Fig. 8.4 (b), it is not the only
estimator of the central value.

The median xmeq is defined as the half-way point of the distribution:

X(N+1)/2 if N is odd
Xmed = (ordered from low to high) (8.11)
(XN/2 FXN/2+1) 1 20F N is even

for a discrete distribution with N elements, or

\Xmed \¥
O, P(dx Qo PX)dx
v =

. =1/2
Q¥P(x)dx 0P (x)dx

(8.12)
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for a continuous distribution. For probability distributions, which are normalized to
unity, the denominators in Egs. (8.10) and (8.12) can be omitted.

The mode is the most likely value x in the distribution:

P(Xmode) = [maximum value of P]. (8.13)

These estimators vary in their usefulness for describing the central value. There may
be situations, such as the distribution in Fig. 8.4 (a), where none of the estimators is
useful in predicting the value of a measurement.

How do we characterize whether a measurement will yield a value of x close to
the central value (be it <X>, Xmed Or Xmode)? That is, how do we characterize the width

of the distributions in Fig. 8.4? A quantity that we introduced in other sections of these
notes is the dispersion (Dx)2, defined by

< (Dx)2>= @x - <x>)2P(x)dx / BP(x)dx (8.14)

for a continuous distribution. It is straightforward to show that Eq. (8.14) is equivalent
to

< (Dx)2 > = <x2> - <x>2, (8.15)

We use the term dispersion for < (Dx)2 > to avoid conflict with the statisticians' term
variance, which has a slightly different normalization. For a discrete data set with N
elements, the variance is

Var(xq ... xN) © 02 = (N-1)-1 szlyN(xj - <x>)2, (8.16)

where o is the standard deviation. Just as the mean is the first moment of the
distribution, the dispersion and variance are the second moments. At large N, the
dispersion and variance converge.

Clearly, if the dispersion or variance of a data set is large compared to <x>2,
then the likelihood of successive measurements giving similar values of x is small.
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Fraction

A <x>

—> X
<X>-0 <X>+0

Fig. 8.5 In a Gaussian or normal distribution, 68.3% of the measured values of x lie
within +o of the mean value <x>.

8.4 Are data sets consistent?

The mean and dispersion have probabilistic significance. Often, the measured
values of x in a large data set obey a normal or Gaussian distribution, illustrated
schematically in Fig. 8.5. Integrating the corresponding probability distribution shows

that the probability of x to be between <x>-c and <x>+o is 0.6827. This means that
68.3% of the measured values of x lie within o of the mean value <x>.

If the sample size is small, then both the mean and dispersion may vary
significantly from one data set to another. But as the sample size becomes large, then

<x> and o should converge to their respective asymptotic values. In other words, the
width o of the distribution tends to a specific value as the number of data N in the
sample increases; o does not decrease to zero with increasing N. What does

decrease with N is the uncertainty in <x> and the uncertainty in . The situation is
illustrated in Fig. 8.6, which shows the mean values of three fictitious data sets. Both

<x> and o change with the samples, but become ever better known as the size of the
total sample increases.
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<x>=2.44 <x>=2.69 <x>=2.31

12 3 4 12 3 4 12 3 4
Fig. 8.6 Three independent data sets of the same observable have three values for
<x> and o. Each data set has the same number of data points.

It is not uncommon for the standard deviation to be confused with the error in
the mean. While <x> £ o may represent the range within which two-thirds of the data

points lie, it does not mean that <x> is known only to within £o. In the data shown in
Fig. 8.6, the standard deviation in each of the data sets is a little less than 1.0, but the
change in <x> from one data set to the next is much less than 1.0. In fact, if all of the
data points are combined, for a sample which is triple in size compared to any given
individual sample in Fig. 8.6, the resulting mean is 2.48.

In the same way as one constructs the standard deviation of the distribution of x,
one can construct the standard deviation of the distribution of <x>, which is called the

standard error and which we denote by ce. For the data in Fig. 8.6,

Oe2 = [(2.44-2.48)2 + (2.69-2.48)2 + (2.31-2.48)2] / 2
= 0.037, (8.17)

from which the standard error itself is
oe = 0.19. (8.18)
As one expects from Fig. 8.6, the values of <x> span a much narrower range than does

the distribution in x itself, and the standard error of <x> is much smaller than the
standard deviation of x.

If the distribution is Gaussian, then
0e2 =02 /N, (8.19)
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where N is the number of data points in the sample from which <x> is obtained.
Hence, if <x> and o are determined from one data set, then 68.3% of the mean values

determined from other data sets would lie between <x> - ge and <x> + og.

Returning to the question in the title of this section: how can we tell if two data
sets are consistent? That is, how can we tell if there is a reasonable probability that
two data sets with small N could have been chosen independently from the same
probability distribution? To answer this question in the detail that it deserves takes us
too far into the realm of statistics; as usual, we refer the reader to Numerical Recipes
for further details. Without too much statistics, however, we can address two aspects of
the consistency of distributions.

Mean values

The mean values of two data sets are probably consistent if they fall within one
standard error ce of each other. Since one actually doesn't prove consistency with

statistics, a better wording would be that the means values may be inconsistent if they
are separated by more than 2 standard errors. We are told very little about

consistency if two mean values <x> fall within a standard deviation ¢ of each other: it is
the standard error oe that is important for mean values.

¥2 statistic

More meaningful tests of the consistency of data sets must involve the
comparison of the data on a bin-by-bin basis. Two data sets could easily have a
similar mean, and yet have a very different distribution. For example, a random
distribution of numbers between zero and one has the same mean as a delta-function

centered at x = 1/2. A measure of the sameness of distributions is the x2 (or chi-
square) statistic, defined by

M - Ej)2

(8.20)

The quantities Mj and Ej are numbers: M; is the number of events measured in the ith

data bin, and Ej is the number of events expected in the ith bin according to some
known distribution. Clearly, any term with Mj = E; = 0 should be omitted from Eq.

(8.20). Chi-square is small if M; is close to Ej in each bin. How small must x2 be
before one could say that the data are consistent?
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First, one must normalize 2 itself to reflect the fact that %2 increases with the
number of data bins, for a given data set. To illustrate this, suppose that the total

number of data points both measured and expected is the same; that is, SM; = SE;.
Then, if all of the data were placed into just one bin, x¥2 = 0! Obviously, this is not a

very useful comparison; the fewer the number of data bins, the more information about
the distribution has been discarded. However, the larger the number of bins, the more

likely it is that M; will not equal E; in a given bin, and the larger %2 will be. Hence, one

should divide %2 by a quantity that reflects the way in which the data have been binned

and/or fitted. This relevant quantity is called the number of degrees of freedom v and
is given by

v = [number of data bins, Npjn]
- [number of free parameters used to predict the E;j distribution] (8.21)

For example, if the total humber of expected events is adjusted to equal the total
number of observed events (i.e., SE; = SM; ), then

[number of free parameters used to predict Ej] = 1
and v = Npjp - 1.

The statistical properties of the chi-square probability function are known [see
Press et al., (1992), Chaps. 6 and 14]. It is found that the measured distribution is not

inconsistent with the expected distribution if x2 =v. That is,
v2/v~1 (8.22)

if it is likely that the data agree with expectations. In the case of two data sets Xj and Yj,
the chi-square statistic becomes

Xt (8.23)

if the number of data points has been adjusted to be the same in both samples (i.e.,
SX; = SY;, for which v=Np - 1). See Press et al. (1992) for SX;1 SY;.
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8.5 Data fitting

In physics, we often try to fit a data set with a model, perhaps motivated by a
microscopic interpretation of the system being measured. At one level, we can ask
whether the data are consistent with the model: given a set of predictions E; for the

elements in the data set, what is the probability that the measured values M; would be

found in an experiment? This question is addressed in Sec. 8.4 through the 2
statistic. Sometimes the model involves a number of parameters, and then the
guestion becomes: what choice of parameters best represents the data.

As emphasized by Press et al. (1992), this question has subtle assumptions that
should be clarified. A physicist may perform a measurement with several models in
mind, and may wish to find out which model is the "most likely" one. Perhaps there are
three models A, B, and C, and it is tempting to ask what is the probability of model A
being correct, the probability of model B being correct, etc. Unfortunately, the question
cannot be approached in this manner. While the model may be motivated by the
measurement, in fact statistical deduction assumes that the proposed model is true,
and asks: what is the likelihood that the data set could be obtained from the model? In
other words, rather than assigning a probability to the model, we obtain a probability
for the data set, assuming the model is true. If the probability of the data set being
extracted from the model is low, then the model is discarded.

We introduce some symbols to address the issue in more mathematical terms.
Suppose that the measurement consists of finding the size of an oilspill as a function
of time. We wish to "fit the data" to obtain, say, the rate at which the oil spreads. We
measure the area of the spill, which will be called y;, at a sequence of times ty, to, t3,

..IN. Thus, the measurement generates a data set

Time Area
t Y1
o y2
t3 y3
tN YN

To interpret the data, we construct a model of the spill that gives a function y(t) for the
area as a function of time.
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Each of the area measurements has an uncertainty, and we assume that the
measured values obey a normal distribution around the "true" value, given by y(t). For

the time being, we assign the same standard deviation ¢ to each measurement. Thus,
the probability P;j that a given measured value vy; lies in the range Dy around the "true"
value is

iwen[ 2 (220 oy

In Eqg. (8.24), o is the standard deviation of the measured distribution for each value of
y; it is not the standard error of the mean value <y>. The probability that every element

of the data set lies in the range Dy around the predicted value y(t) is then

(8.24)

P=P; Py P3..Py, (8.25)

or
N
o uP{oo 2 (295 ]or)

The task, then, is to choose a parameter set that maximizes the likelihood P that
the observed data could have been chosen from the model y(x). Maximizing P is
equivalent to maximizing its logarithm

(8.26)

InP = S [ (y. (t)) + InDy ] + constants

(8.27)
or to minimizing the negative of its logarithm
-InP = S [ (y. (t)) ] -N InDy - constants
(8.28)
Since the last two terms in Eq. (8.28) involve only constants, then
i - y(6)°
[maximum of P]U [minimum of S MEAY ]
i=1 202 (8.29)
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The right-hand side of Eq. (8.29) is also refered to as the least-squares fit,

whose functional form looks similar to the form of x2 for discrete data distributions.
Hence, we generalize the definition of chi-square to

2-g - y(6)]?
o (8.30)

where the comparisons are now between data that may have physical units. It is
simple to obtain Eg. (8.20), which deals with numbers, from (8.30) by recognizing that
the standard deviation of a distribution with n elements is just On. Of course, in an

experimental measurement, the width of the distribution o; may be affected by more
that just statistical errors; there may be systematic uncertainties (perhaps associated
with the apparatus or its operators) that are included in ;.

Fitting the data to a model then has three aspects:
1. The operation of minimizing 2.

2. The evaluation of x2 per degree of freedom to see if the fit is meaningful.
3. The assignment of uncertainties to the parameters extracted from the fit.

8.6 Linear regression

In the technique of linear regression, a linear function y(x) = a + bx is used to
represent the "true" data. The corresponding expression for x2 becomes

(8.31)

As a function, x2 depends on two parameters, a and b. Hence, two conditions must be
fulfilled for %2 to be at a minimum, namely

ﬂXZ Syl a - bx;

0=
fa - o (8.32a)
0= 1%); - 5 le (vi- 3.2 bx; )
O (8.32b)
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The evaluation of these two equations can be simplified by throwing away the factor of
-2 and writing out the sums explicitly:

0=S yio2 - S alo? - S bxi/o2 (8.33a)

0= Si Xiyiloi - Si axiloi? - Si bxi2/oi2. (8.33b)
Egs. (8.33) involve 5 independent sums
S° Si 1/oi? Sy° Si xiloi? Sy° Si yiloi?
Syx © Si X202 Sxy © Si Xiyiloi2,
which can be used to recast the equations in a more familiar form
aS +bSx =Sy (8.34a)
aSy +bSyx = Syy. (8.34b)

The two unknowns in Eq. (8.34) are a and b, which have the solution

a=(SxxSy-SxSxy)/D (8.35a)

b =(SSxy-SxSy)/D (8.35h)
where

D =SSyy - Sy2. (8.36)

The minimum chi-square solutions for a and b are written out explicitly in Eqs.
(8.35) and (8.36). But a and b are not exact; they represent a "best fit" of the data,
which have uncertainties. The values of a and b also have standard deviations, which
we denote by o3 and op [see Press et al. (1992)]:

Oaz = SxxlD (837a)

ob2 =S /D. (8.37b)
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Lastly, once all of the parameters and their uncertainties have been found, we ask:
does the fit have any meaning? To answer this, evaluate chi-square per degree of

freedom y2/v for the fit, and compare the answer to 1.

8.7 Summary of notation

A rather large number of symbols have been defined in this section, and we
summarize them here for the convenience of the reader. Here, N is the number of data
points in the sample.

Measures of centrality

<x> = mean <x>=N-1 SJl X (8.9)
Xmed = median X(N+1)/2 OF (XN/2 +XN/2+1) /2 (ordered list) (8.11)
Xmode = mode P(Xmode) = [maximum value of P]. (8.13)

Width of distributions

< (Dx)2 > = dispersion < (Dx)2 > = <(x - <x>)2 > (8.14)

o = standard deviation 02 = (N-1)-1 Sj:l,N(XJ' - <x>)2 (8.16)

Uncertainties and data fitting

oe = standard error ce2 =02 /N (for normal distribution) (8.19)
2=S [yi - Y2
2 = chi o
x4 = chi-square (8.30)
oj = standard deviation of data point i

Oa , Op = standard deviation of linear regression parameters a and b (8.37)
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8.8 Project 8 - Analysis of random numbers

The repeated measurement of an observable generates a data set whose
elements are spread over a range of values. In this project, we use a random walk to
provide an observable, namely the end-to-end displacement ree, from which we can

generate a data set with known characteristics. We analyse both the distribution of ree
in an individual data set, and the distribution of R° <rege> found from several data sets.

Physical system

The end-to-end displacement of a random walk in one dimension has a
Gaussian form at large number of steps given by Eq. (8.5)

P(X)dx = (2pw?)-1/2 exp(-x2/2w?2) dx, (8.38)

where P(x) is a probability density (probability per unit length) and x is introduced as
shorthand for ree. The probability of finding a value of x between x and x + dx is then

P(x)dx. The width of the distribution (which is also its standard deviation) is w, where
032 = Nstepaz (839)

for one-dimensional walks with a fixed number of steps Nstep [see Eg. (8.6) for walks in

higher dimensions]. In this project, we are interested not only in the width of the

distribution, but also in the standard deviation and standard error of the width as

extracted from a sample of walks.

Simulation parameters

The mean value of ree for all chains, large and small, should be zero by
symmetry, since the walk can end on either side of the origin. However, the mean
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value of ree? does not vanish, and increases with Nstep- Thus, if we average over
sufficiently many walks that the distribution of ree is fairly smooth, then we expect that
the distribution for large Nsiep Will be wider than the distribution for small Nstep. The
effect is shown schematically in Fig. 8.7. While the schematic data in Fig. 8.7 are
purposefully symmetric about ree = 0, this situation would be highly unusual in a data
set. Thus, although R ° <ree> =0 in Fig. 8.7, in practice R * 0. For a given Nstep,
adding more samples to the data set does not change the distribution of ree
appreciably, although it does bring the value of R ever closer to zero.

For a given sample, then, we expect R * 0. We can repeat the determination of
R with another sample, and obtain another value of R, also not equal to zero. By
generating one sample after another, a distribution in R can be built up, as shown in
Fig. 8.8. A value for <R> can be extracted from the distribution in R, and this value
comes closer to zero as the number of sample sets increases.

Fraction

SMALL N

fee

Fig. 8.7 The shape of the distribution in ree depends upon the number of steps Nstep
in the walk. The solid blue distribution is for large Nstep, While the red line is the
distribution for small Nstep. Larger walks have a broader distribution: the width grows

I|ke Nstepllz
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R© <ree>

Fig. 8.8 Distribution of R © <rge> obtained from multiple data sets. Each distribution of
ree from Fig. 8.7 produces one value of R. As the number of sample sets increases,
the mean value of R becomes known ever more accurately.

Code

The code required to generate the random walk data for analysis purposes is very
short.

1. Perform a random walk in one dimension by throwing a random number to
determine whether to walk to the left or right at each step. Start the walk at the origin,
and make each step of unit length. The values of ree that you obtain will either be all

odd, or all even, according to the value of Nstep.

2. Allow the number of steps in the walk, Nstep, to be a variable. The code executes
so fast that the walk size and the sample size can range into the tens of thousands -

although running such large samples will not help us understand error analysis.
Analysis
The notation in this project tends to be a little confusing, as one ends up finding

dispersions of standard deviations etc. To aid the reader, we summarize some of the
definitions:
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Parameters of the walks:
Nstep = number of steps in the walk

Nwalk = humber of walks in a sample
Nsample = number of samples (each with Nyak)

Parameters of the distributions:
R = <ree> = the mean value of ree in a single sample of Nwak walks at fixed Nstep

Q = <ree?> = the mean value of ree? in a single sample of Nyak walks at fixed Nstep

Oree, Oree2 = Standard deviation of the distributions of ree and ree? in a single sample
with Nwalk elements

W= Nstep1/2a = theoretically expected standard deviation (Q) for a distribution of walks
at f|Xed Nstep
<R>, <Q> = mean values of R and Q obtained from several samples with Nsample

elements; for large Nsample, <R>® 0 and <Q>® w2
OR, 0Q = standard deviation of the distributions of R and Q

DO NOT USE CANNED ROUTINES FOR THE FOLLOWING ANALYSIS;
WRITE YOUR OWN CODES!

A single "experiment"

1. This experiment uses:
«five different values of Nstep (20, 30, 40, 60, 100)

200 walks for each value of Nstep: that is, Nwalk = 200
*only one sample at each Nstep, comprising 200 walks; Nsample = 1.
Here, we analyse the properties of a random walk.

2. Choose a value of Nsiep from the set (20, 30, 40, 60, 100), and determine ree and
ree? for one walk.

3. Construct ensemble averages R © <rge> and Q ° <rege2> as well as their standard
deviations oree and oree2 for each Nsiep by generating and averaging over 200 walks
(i.e., Nwalk = 200 for each Ngtep). Check that R~ 0and Q ~ w?.

4. Repeat steps 2 and 3 for all five values of Nsgtep.
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5. Using the data from Steps 2-4, verify that R does not depend on Nstep and find the
Nstep-dependence of Q. Make a linear fit to InQ vs. InNggep to find the power-law

behavior (for the weights, use the standard deviation: oyee2 / Q). Determine statistical
measures such as chi-square, and the standard deviation of the power-law exponent.

Comparison of many "experiments"

1. This experiment uses:
one value of Nstep (40)

+200 walks in each sample; Nyak = 200
«fifty samples, each comprising 200 walks; Nsample = 50.
Here, we compare the results of several different experiments for consistency.

2. For a fixed Nstep (40) and sample size Nwalk (200), generate Nsample = 50 sample
values of R and Q.

3. Determine the mean values <R> and <Q> as well as or and og, by considering
data sets with Nsample = 10, 20 and 50 samples.

You expect: <R>® 0 and <Q>® 2. What do you expect for or and og as a function
of Nsample?

4. Using the data from Step 2, calculate the mean and median of the R and Q
distributions for Nsample = 50. Do these measures agree with one another to within the

standard errors of R and Q?

5. Divide the data from Step 3 into 2 parts, with 25 samples each. Find the mean <Q>
and its standard deviation and standard error for both data sets. Do the two values of
<Q> agree to within their standard error?

Report

Your report should include the following elements:

*a very brief paragraph of the properties of the random walk

ean outline of your code

sthe extensive analysis as described above for the single and multiple experiments
ea copy of your code.
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Demonstration code

The demonstration code shows the distribution of ree generated for a random

walk of constant step length in one dimension. The code has a set-up page that
allows you to select the number of steps in the walk, and the number of walks in the
sample. From the shape and magnitude of the distributions, you can see the following:

1. The shape is independent of sample size, for a fixed Nstep. Choose a specific Nstep

from the menu and run the code at different sample sizes. Obviously the smallest
samples produce a somewhat ragged distribution, but one can see that the general
shape and magnitude of the distribution do not change.

2. The width increases with the number of steps in the walk. It is best to run this
simulation with the largest sample size in the menu, so that the distributions are
smooth. By varying the number of steps Nstep in the walk, one can see that

sthe width of the walk increases with Nstep
sthe fraction of walks with ree = 0 decreases with Nstep.
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