COMPUTATIONAL PHYSICS

by
David H. Boal
Department of Physics
Simon Fraser University

©1997 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited.

Table of contents	ii
Preface	٧
Chapter 1 Numerical integration 1.1 Monte Carlo integration 1.2 Euler integration 3 1.3 Leapfrog and Verlet algorithm 5 1.4 Predictor-corrector method 1.5 Runge-Kutta 7 1.6 Project 1 - simple harmonic motion 10	1
Chapter 2 Many-particle motion 2.1 Lagrangian formalism 2.2 Hamiltonian formalism 2.3 Computer-friendly potentials 2.4 Molecular dynamics 2.5 Project 2 - flight to the moon 12 13 20	12
Chapter 3 Random walks and random numbers 3.1 Polymers 24 3.2 Random walks 26 3.3 Distribution of ree 28 3.4 Self-avoiding chains 3.5 Random sequences 32 3.6 Uniform deviates 3.7 Non-uniform deviates 3.8 Project 3 - phantom chain 40	24
Chapter 4 Systems at finite temperature 4.1 Boltzmann weight 4.2 Derivation of Boltzmann factor 4.3 Example: harmonic oscillator 4.4 Metropolis algorithm 50 4.5 Example: two-state model 4.6 Subtleties and variations 4.7 Project 4 - chains with attraction 56	44
Chapter 5 Systems under pressure 5.1 Ideal gas law 62 5.2 NPT and NVT ensembles 67 5.3 Project 5 - Ideal gas at constant pressure 74	62

Chapter 6 Periodic boundaries		78
6.1 Non-ideal gas	78	
6.2 Periodic systems	81	
6.3 Rectangular cells	84	
6.4 Variations on PBCs	86	
6.5 Project 6 - Hard sphere gas	87	
Chapter 7 Roots and minimization		91
7.1 Root finding	91	
7.2 Minimization	95	
7.3 Project 7 - angels on a ring	98	
Chapter 8 Data analysis		103
8.1 Ensemble averages	103	
8.2 Distribution of random walks	104	
8.3 Mean, median and mode	107	
8.4 Are data sets consistent?	110	
8.5 Data fitting	114	
8.6 Linear regression	116	
8.7 Summary of notation	118	
8.9 Project 8 - analysis of random numbers	119	
Chapter 9 Spin systems		125
9.1 Spin systems in an applied field	125	0
9.2 Interactions between spins	127	
9.3 Fluctuations of an observable	130	
9.4 Heat capacity	132	
9.5 Susceptibility	134	
9.6 Project 9 - Ising model in 2D	135	
Chapter 10 Neural networks		141
10.1 A single neuron	142	171
10.2 A network of neurons	143	
10.3 Computer representation of networks	145	
10.4 Hebb's rule	150	
10.5 Project 10 - Three-pattern choice	153	
Chapter 11 Pattern classification		153
11.1 Classification and logic	156	
11.2 General Hebb's rule	158	
11.3 Caveat emptor	158	
11.4 Project 11 - tick-tack-toe	161	

Appendix A - Programming environment	165
Appendix B - Graphics B.1 Coordinates B.2 QuickDraw B.3 Project B - interactive stop sign	172 172 174 181
Appendix C - Persistence length	183
C.1 Parametrizations for $< r_{ee}^2 >$	184
C.2 Flexible rods	185
C.3 Simulation of ideal chains	187

Preface

The teaching of physics has traditionally placed a heavy emphasis on those systems in Nature for which there are analytic descriptions. But many natural phenomena either do not lend themselves to analytic treatment, or possess a functional description that has thus far evaded our discovery. Examples of systems that currently require a numerical approach range from the calculation of elementary-particle masses to the mechanical behavior of complex biological systems.

In this course, we explore several of these complex systems from a computational viewpoint, including

- •linear polymers
- non-ideal gases
- •spin systems.

Our task is both to solve these systems numerically, and to analyse our numerical results.

A variety of techniques is used in numerical approaches to physical systems, but only a subset of these is included in this course:

- numerical differentiation and integration
- molecular dynamics
- Monte Carlo simulation
- optimization methods
- •neural networks.

While sufficient time will be devoted to each of these techniques to allow students to work comfortably with them, we emphasize that this is not a course in numerical analysis or algorithm development. However, such courses should be of interest to students considering a career in scientific computing.

The generation and analysis of numerical data involves statistical concepts. We devote one section of the course to data analysis, but refer the interested student to the appropriate literature or statistics courses for further study. Similarly, there are many algorithms, such as fast Fourier transforms, for which very efficient routines are available in standard numerical libraries. We introduce such libraries, but they are not a major component of this course.

David Boal Vancouver, B.C. 1997