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Lecture 18 - Maxwell-Boltzmann distribution

What's Important:

• mean speeds
• molecular flux
Text: Reif

Mean speeds

The Maxwell-Boltzmann speed distribution that was derived in the previous lecture
has the appearance

where F(v) dv is the number of particles per unit volume with a speed between v and
v+dv.

Now, there are three common measures of the velocity distribution

v 2 1/2
≡ v rms (root mean squarespeed)

v ≡ (mean speed)

˜ v ≡ (most likely speed)

.

These quantities are straightforward to calculate, and the details can be found in Reif.

Root mean square One can work through the integral of F(v) to obtain vrms, or
just invoke the equipartition theorem in three dimensions:

3
2

kBT = [mean kineticenergy ] =
1
2

mv 2

or

v rms =
3kBT

m
. (18.1)

Mean Evaluate the integral

v =
1
n

v F (v)dv =
8
π

kBT

m0

∞

∫ (18.2)

Most likely Determine the derivative
dF(v )

dv
= 0 ⇒ ˜ v =

2kBT

m
(18.3)

0 v

F(v)
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From these results, one can see that all the factors outside (kBT /m)1/2 have similar
values

√3 = 1.73
(8/π)1/2 = 1.60
√2 = 1.41,

so that an order-of-magnitude estimate for the mean speed is (kBT /m)1/2, just as the
kinetic energy is ~ kBT.

Example Find the rms velocity of a gas of neon atoms at T = 300 K (near room
temperature); mNe ~ 20mp = 20 • 1.67 × 10-27 kg.

v rms =
3•1.38 ×10−23 • 300

20•1.67 ×10−27

 
 
  

 

1/2

= 610m/s .

Molecular flux

Among the quantities that we wish to measure are the pressure and effusion rate, both
of which require a knowledge of the molecular flux, the number of particles passing
through a unit area in unit time.  We start with a simple calculation in one dimension,
before treating the general problem in three dimensions.

One dimension

Let the system have a linear density of n particles per unit length (linear, since the
system is confined to one dimension).  At any given time, n /2 of them are moving to
the left, and n /2 to the right.  For a specific speed v the particles capable of striking the
wall in time t lie within a distance vt of it.

Allowing for a distribution of speeds, the number of particles hitting the wall is

number = v t •
n

2
=

v n

2
t

Dividing by t gives the number of particles hitting per unit time

number per unit time =
v n

2
(18.4)

n /2 to the right

vt
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Three dimensions

This calculation can be easily extended to include the number hitting a unit area on a
wall.

[number hitting wall area A in time t with velocity v]

= f(v) d 3v          •          A vt cos . (18.5)

number per volume of
unit volume calpture cylinder

The volume of the capture cylinder arises from

Dividing Eq. (18.5) by the area A and time t gives

[number hitting wall per area A per unit time t with velocity v]

= f(v) v cos  d 3v. (18.6)

The flux  is obtained by integrating Eq. (18.6) over all velocities v:
 = ∫ f(v) v cos  d 3v. (18.7)

Details:
d 3v = sin  d  d  v 2dv so  = ∫ f(v) v cos  sin  d  d  v 2dv.

Because only right-moving particles will hit A, the  integral runs only over 0 to π/2:

sin cos d =
0

π /2

∫ cos d cos
0

1

∫ =
1
2

cos2

0

1
=

1
2

∫d  = 2π

area = A

wall

Avt

[volume] = Avt cos
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leaving
 = 2π • (1/2) ∫ f(v) v 3dv = π ∫ f(v) v 3dv.

But the mean speed is

v =
4π
n

v 3f (v)dv∫
so

=
1
4

nv (18.8)

Comparing with Eq. (18.4), the flux is less in 3D than in 1D because the velocities are
averaged over directions, and vz is less than v.  This equation can be massaged in a
variety of ways once the ideal gas law has been established.

Effusion

The Maxwell-Boltzmann predictions for the velocity distributions has been tested
experimentally through a process known as effusion.  A tiny hole is drilled in a
container,

and the velocities of the escaping molecules are measured by means of two co-
rotating disks, acting as choppers to select the molecular velocities:

Because it is sensitive to the escape rate of molecules through the hole, this technique
measures the flux [  ~ f(v)v 3], not f(v) itself.

axis of rotation


