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4xx Control 2 - Rate equations: switches and stability

One of the simplest control circuits is a single negative-feedback loop, where the
presence of a particular protein (which we give the label R) inhibits its own production.
An example of how this might work in the cell is the situation where a protein can bind to
its own gene. When the concentration of R is low, then its small number of copies in the
cell does little to inhibit the transcription of its mMRNA. In contrast, when R is abundant,
transcription is blocked by the binding of R to its gene. Thus, R builds to a certain
critical concentration and then is held fixed at that level through negative feedback. In
this situation, the production rate of A might be described by a single differential
equation with a form like du/dt = -u + u,, where u is the steady-state value of u.

A more general form of a regulatory system involves the variation of two
quantities, which we denote by v and v, with a time dependence governed by the
coupled equations

dudt=-u+al(1+ V") (1a)

dvidt=-v+al/(1+Uu"). (1b)

Here, u and v might be concentrations of proteins in dimensionless units. For our
applications, n > 1. If the parameter o = 0, then the equations decouple and their
solution is just exponential decay of v and v with time. Within the cell, this might be the
case if a protein starts at a fixed concentration and decreases with time. More
interesting behavior arises when o # 0.

To understand the generic properties of Eqg. (1), we start with the solution under
steady state conditions where the time derivatives on the left-hand side of the equations
vanish. Unlike the a = 0 case, now the equations remain coupled in vand v.

Ugs,=al(1+ v, (2a)

Ve = a/ (1 + uy") (2b)

These equations resemble the Hill functions (Sec. 9.5, Mechanics of the Cell). The ss
subscripts identify u,, and v, as steady state solutions.

First, we consider the situation when a >> 1. There are three distinct functional
regimes present:

Case 1 Assuming u, is small, then Eq. (2b) gives the form v, = a, which can be
substituted into Eq. (2a) to yield a consistent solution for u,. Thus,
Uss = a” Vss = O (3)
Case 2 Next, assume v, is small and follow the same steps as Case 1 to obtain
Ug = Ve =a'™ (4)
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Case 3 Now, u,, and v,, cannot be small simultaneously if ¢ >> 1 as inspection of
Eq. (2) confirms. Thus, the only other possibility left is that they are both large
simultaneously; solving Eq. (2) for this situation yields

USS = VSS = a1/(1+’7)_ (5)

Next, consider the opposite range of a, where a << 1. Again, we start by
assuming u, is small, so that Eq. (2b) yields v, = «, from which u, = o according to Eq.
(2a). Thus, one possible solution is

Ugs = Vg = 0L (6)

However, proposing that one of u or v, is large does not yield a consistent solution
upon substitution into Eq. (2). So, the regime with @ << 1 has only one solution, Eq. (6),
not the three solutions present in Egs (3) - (5) when a>> 1.

Egs. (3) to (6) are the asymptotic steady state solutions to Eq. (1) in two limits of
the parameter «: there is one solution at small ¢ and three solutions at large . The
next step is to find which solutions are stable. A mathematical test of the stability of
solutions to a potential energy function Wx) is that its second derivative must be
positive: d*V/dx* > 0 for stability. Graphically, a positive second derivative means that
the shape of the potential energy curve around the solution is concave up and therefore
stable. In Eq. (1), we are interested in the time-dependence of v and v around the
values of u, and v if v is displaced slightly from the steady-state value, does it
oscillate around u, indicating stability? Or does v move away from u,, indicating
instability? By introducing the small quantities 6,(f) and J,(f) via the equations

u(t) = Uss + 6,(1) (7a)

W) = vis + 0,(0), (70)

the time dependence of the perturbations can be corralled into a set of equations for
o,(f) and o,(f. To simplify the notation, Eq. (1) is rewritten as

dudt=-u+ g(v) (8a)

dvidt=-v+ g(u), (8b)
with

9gx) =al(1+X), 9)

so that the steady-state solutions obey u,, = g(v,,) and v, = g(u,;). Combining Egs. (8)
with the series expansion g(u) = g(u,,) + g (u.)d, [with a similar form for g(v)], yields

do, /dt=-6, + g(v)o, (10a)

dd, /dt=-¢6, + glug)d,, (10b)

where g{(x) is the derivative of g(x) with respect to x.
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Assuming that unstable states diverge from their steady state solutions
exponentially with time, we assign 6,(f) and d,(f) the functional forms

6,(f) = 8y, €XP(AD) (11a)

6,(f) = 8,, exp(A), (11b)

where §,, and §,, are constants and A is a rate constant. If A> 0, the perturbation grows
with time (unstable) whereas if A <0, it decays with time (stable); we have assumed that
the same rate constant applies to v and v. Substituting Eq. (11) into Eq. (10) gives the
set of coupled equations

(1+4) 6o = 9(Ve) b0 (12a)

(1 + 4) 640 = 9(Uss) ooy (12b)

which can be combined to yield
1+A=% [g,(uss)gl(vss)]wz- (13)

The stability condition A < 0 then imposes the requirement
g,(uss)gl(vss) <1, stable solutions (1 4)

and that g/(u,)g(v,) be positive.

We now apply this stability analysis to the steady state solutions in Egs. (3) - (6).
Considering first the regime « << 1, the solutions in Eq. (6) give g(us)9(V.s) = md?". For
small « and n greater than unity, &®” must be much less than 1, so the single symmetric
solution (u, = Vv,,) is stable. However, in the regime a >> 1, the solution in Case 3 leads
to g(u.)g(v.,) = ?, which must be larger than unity because n> 1. Thus, the symmetric
solution u = v, is unstable at a >> 1 even though the symmetric solution is stable at «
<< 1. However, the remaining two solutions at ¢ >> 1 are both stable. The overall
behavior of the stable solutions to Egs. (2) is that there is a single, symmetric solution at
small values of the parameter a, and two asymmetric solutions at large values of a.
The large-a solutions have the properties of a switch, and the transition from a single
solution regime to the switch regime occurs at a value of « that depends on n.
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