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4xx Control 2 - Rate equations: switches and stability 
 
 One of the simplest control circuits is a single negative-feedback loop, where the 
presence of a particular protein (which we give the label R) inhibits its own production.  
An example of how this might work in the cell is the situation where a protein can bind to 
its own gene.  When the concentration of R is low, then its small number of copies in the 
cell does little to inhibit the transcription of its mRNA.  In contrast, when R is abundant, 
transcription is blocked by the binding of R to its gene.  Thus, R builds to a certain 
critical concentration and then is held fixed at that level through negative feedback.  In 
this situation, the production rate of R might be described by a single differential 
equation with a form like du/dt = -u + uss, where uss is the steady-state value of u. 
 
 A more general form of a regulatory system involves the variation of two 
quantities, which we denote by u and v, with a time dependence governed by the 
coupled equations 
 du/dt = -u + α / (1 + vn )       (1a) 
 dv/dt = -v + α / (1 + un ).       (1b) 
 
Here, u and v might be concentrations of proteins in dimensionless units.  For our 
applications, n > 1.  If the parameter α = 0, then the equations decouple and their 
solution is just exponential decay of u and v with time.  Within the cell, this might be the 
case if a protein starts at a fixed concentration and decreases with time.  More 
interesting behavior arises when α ≠ 0. 
 

To understand the generic properties of Eq. (1), we start with the solution under 
steady state conditions where the time derivatives on the left-hand side of the equations 
vanish.  Unlike the α = 0 case, now the equations remain coupled in u and v: 
 uss = α / (1 + vss

n)        (2a) 
 vss = α / (1 + uss

n)        (2b) 
 
These equations resemble the Hill functions (Sec. 9.5, Mechanics of the Cell).  The ss 
subscripts identify uss and vss as steady state solutions. 
 
 First, we consider the situation when α >> 1.  There are three distinct functional 
regimes present: 
 
Case 1 Assuming uss is small, then Eq. (2b) gives the form vss = α, which can be 
substituted into Eq. (2a) to yield a consistent solution for uss.  Thus,  
 uss = α1-n  vss = α.      (3) 
 
Case 2 Next, assume vss is small and follow the same steps as Case 1 to obtain 
 uss = α   vss = α1-n.      (4) 
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Case 3 Now, uss and vss cannot be small simultaneously if α >> 1 as inspection of 
Eq. (2) confirms.  Thus, the only other possibility left is that they are both large 
simultaneously; solving Eq. (2) for this situation yields 
 uss = vss = α1/(1+n).        (5)  
 
 Next, consider the opposite range of α, where α << 1.  Again, we start by 
assuming uss is small, so that Eq. (2b) yields vss = α, from which uss = α according to Eq. 
(2a).  Thus, one possible solution is 
 uss = vss = α.         (6) 
 
However, proposing that one of uss or vss is large does not yield a consistent solution 
upon substitution into Eq. (2).  So, the regime with α << 1 has only one solution, Eq. (6), 
not the three solutions present in Eqs (3) - (5) when α >> 1. 
 
 Eqs. (3) to (6) are the asymptotic steady state solutions to Eq. (1) in two limits of 
the parameter α: there is one solution at small α and three solutions at large α.  The 
next step is to find which solutions are stable.  A mathematical test of the stability of 
solutions to a potential energy function V(x) is that its second derivative must be 
positive: d2V/dx2 > 0 for stability.  Graphically, a positive second derivative means that 
the shape of the potential energy curve around the solution is concave up and therefore 
stable.  In Eq. (1), we are interested in the time-dependence of u and v around the 
values of uss and vss: if u is displaced slightly from the steady-state value, does it 
oscillate around uss indicating stability?  Or does u move away from uss indicating 
instability?  By introducing the small quantities δu(t) and δv(t) via the equations 
 u(t) = uss + δu(t)        (7a) 

v(t) = vss + δv(t),        (7b) 
 
the time dependence of the perturbations can be corralled into a set of equations for 
δu(t) and δv(t).  To simplify the notation, Eq. (1) is rewritten as  
 du/dt = -u + g(v)        (8a) 
 dv/dt = -v + g(u),        (8b) 
 
with 
 g(x) = α / (1 + xn),        (9) 
 
so that the steady-state solutions obey uss = g(vss) and vss = g(uss).  Combining Eqs. (8) 
with the series expansion g(u) = g(uss) + g'(uss)δu [with a similar form for g(v)], yields 
 dδu /dt = -δu + g'(vss)δv       (10a) 
 dδv /dt = -δv + g'(uss)δu,       (10b) 
 
where g'(x) is the derivative of g(x) with respect to x. 
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 Assuming that unstable states diverge from their steady state solutions 
exponentially with time, we assign δu(t) and δv(t) the functional forms 
 δu(t) = δuo exp(λt)        (11a) 

δv(t) = δvo exp(λt),        (11b) 
 
where δuo and δvo are constants and λ is a rate constant.  If λ > 0, the perturbation grows 
with time (unstable) whereas if λ < 0, it decays with time (stable); we have assumed that 
the same rate constant applies to u and v.  Substituting Eq. (11) into Eq. (10) gives the 
set of coupled equations 
 (1 + λ) δuo = g'(vss) δvo       (12a) 
 (1 + λ) δvo = g'(uss) δuo,       (12b) 
 
which can be combined to yield 
 1 + λ = ± [g'(uss)g'(vss)]1/2.       (13) 
 
The stability condition λ < 0 then imposes the requirement 
 g'(uss)g'(vss) < 1,    (14) 
 
and that g'(uss)g'(vss) be positive. 
 
 We now apply this stability analysis to the steady state solutions in Eqs. (3) - (6).  
Considering first the regime α << 1, the solutions in Eq. (6) give g'(uss)g'(vss) = n2α2n.  For 
small α and n greater than unity, α2n must be much less than 1, so the single symmetric 
solution (uss = vss) is stable.  However, in the regime α >> 1, the solution in Case 3 leads 
to g'(uss)g'(vss) = n2, which must be larger than unity because n > 1.  Thus, the symmetric 
solution uss = vss is unstable at α >> 1 even though the symmetric solution is stable at α 
<< 1.  However, the remaining two solutions at α >> 1 are both stable.  The overall 
behavior of the stable solutions to Eqs. (2) is that there is a single, symmetric solution at 
small values of the parameter α, and two asymmetric solutions at large values of α.  
The large-α solutions have the properties of a switch, and the transition from a single 
solution regime to the switch regime occurs at a value of α that depends on n. 
 

stable solutions 


