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4xx Control 4 - Molecular basis of regulation 
 

The cell cycle involves changes in cell shape and activity, which means that the 
concentrations of various proteins or other molecular constituents of the cell may 
change with time, particularly for eukaryotes.  Consequently, mechanisms must be 
available to control the production rate for many of the cell's molecular products, both 
individually and as members of a group involved in a collective activity. 

 
Transcription control in prokaryotes 
 
 At the molecular level, the first step in the transcription process is the attachment 
of RNA polymerase to double-stranded DNA at a promoter site 
 
 

 
 
 
 
For transcription to occur, RNA polymerase first encompasses the double helix at the 
promoter, then opens the helix and begins to read along the gene (moving to the right in 
the diagram).  In some situations in bacteria, a single promoter is the start point for a 
series of related genes, all transcribed sequentially onto the same mRNA; in such 
instances, the promoter and associated genes are collectively called an operon.  
Transcription can be influenced by the attachment of regulatory proteins that serve as 
sensors to their environments: for example, they may be able to bind a particular 
chemical compound or ligand. 
 

Under negative control, a gene repressor protein (also called a transcriptional 
repressor) attaches to a site called the operator and is able to block the attachment of 
RNA polymerase.  The operator provides a ligand-sensitive switch that can function in 
one of two ways: 
 
Example 1 - negative control The repressor binds in the absence of the ligand, 
turning the gene off.  Then, when the ligand binds to the repressor, the pair is released 
from the DNA helix and the gene turns on. 
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Example 2 - negative control The repressor binds in the presence of the ligand, 
turning the gene off.  Then, when the ligand is absent, the repressor is released from 
the helix and the gene turns on. 
 

 
 
 
 
 
 
 
 
There are situations in which a bound protein can have a positive effect by enhancing 
the function of RNA polymerase, for example by helping it open the DNA helix.  Such 
proteins are called gene activator proteins (or transcriptional activators), and they can 
function as switches if their ability to bind to DNA is affected by the presence/absence of 
a ligand. 
 

 
 
 
 
Example 3 - positive control The activator binds to DNA in the absence of the 
ligand, turning the gene on.  Then, when the ligand binds to the activator, the pair is 
released from the helix and the gene turns off or the frequency of its transcription is 
dramatically curtailed. 
 

 
 
 
 
 
 
 
 
Example 4 - positive control The activator binds to DNA in the presence of the 
ligand, turning the gene on.  When the ligand is not present, the activator is released 
from the helix and the gene turns off. 
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Note the reversal of the on-off states here compared to the negative control situations.  
Even though binding sites may be well separated along the helical contour, they may be 
spatially close if the helix forms a loop. 
 
 We now begin to describe the regulation mechanisms in Examples 1 - 4 in terms 
of the mathematical formalism developed in lecture Control 2 for coupled equations.  
Suppose that we can isolate the production and degradation of two particular proteins A 
and B from the remaining biochemical pathways in the cell.  If these proteins are 
present at some initial concentration in the cell, but are not produced or destroyed 
during the cell cycle, then their concentration will decline as the cell volume expands.  
The rate at which the concentration falls is proportional to the concentration itself at any 
given time, so that dcA/dt = -λcA.  This equation will also apply if the protein is degraded 
by additional means, but the rate constant λ will be different and may depend on the 
concentration of the species, protein or otherwise, that removes protein A from the 
system.  Next, let protein A also be produced in the cell at a rate γ, independent of the 
cell volume.  As a result, the rate equation will be modified to read dcA/dt = -λcA + γ, 
where the plus sign indicates A is being produced, not destroyed.   
 

As a further extension, let another protein B act as a repressor to A, so that the 
rate of production γ will be reduced according to the probability pB that B can bind to the 
operator site of the gene that codes for protein A.  To accommodate the repressor, the 
equation governing dcA/dt becomes 
 dcA/dt = -λcA + γ(1 - pB),       (1a) 
 
where the factor (1 - pB) means that the more likely the binding of repressor B, the 
smaller the production rate γ(1 - pB).  The possibility of switch-like behavior arises if 
there is another pathway in which A acts as a repressor to the production of B, so that 
the time evolution of species B obeys 
 dcB/dt = -λcB + γ(1 - pA),       (1b) 
 
where the same degradation rate λ and production rate γ have been used in both 
equations for simplicity. 
 

We need to determine the functional form of the binding probabilities pA and pB.  
The probability of a ligand at concentration cL to bind to a receptor is given by the Hill 
function [Eq. (9.93) of Mechanics of the Cell] 

pbound = (cL/co)nexp(-βΔε) / {1 + (cL/co)nexp(-βΔε)},   (2) 
 
where n is the Hill coefficient.  As applied to the two-species transcription problem we 
have formulated, the reference concentration co, receptor-ligand binding energy Δε, and 
inverse temperature β are all fixed, so they can be wrapped together into a single 
constant K as 
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 K = exp(-βΔε) / co
n,        (3) 

 
permitting us to rewrite pbound as 
 pbound = KcL

n / (1 + KcL
n).       (4) 

 
Thus, 
 1 - pbound = 1 / (1 + KcL

n),       (5) 
 
and Eq. (1) can be expressed as 
 dcA/dt = -λcA + γ/(1 + KcB

n)       (6a) 
dcB/dt = -λcB + γ/(1 + KcA

n).       (6b) 
 
Once again, the combination of terms in K is taken to be the same for species A and B 
to simplify the mathematics. 
 

Leaving aside the Hill coefficient, there are three parameters in Eq. (6), two of 
which can be absorbed into the definition of the concentration c and time t, leaving only 
a single combination γK1/n/λ.  Thus, Eq. (6) has the same coupled structure as seen in 
the system in Control 2, where we showed that under weak coupling (small values of 
γK1/n/λ here), the equations permitted only a single stable solution, whereas at large 
coupling, there were two stable solutions and the system possessed switch-like 
behavior.  The stable solutions in the switch regime are asymmetric, in which one of the 
protein concentrations is large and the other is small, depending on the initial conditions 
of the system. 
 
 This genetic switch is not the same as an oscillator; rather, it is a system that can 
be driven between two different states.  However, a simple extension of the two-
component switch model to include a third repressor leads to oscillatory behavior in 
some ranges of its parameter space.  The network, dubbed a repressilator, involves 
three repressor proteins interacting in a loop: 

•Protein A represses the expression of protein B 
•Protein B represses the expression of protein C 
•Protein C represses the expression of protein A. 

 
To describe the concentrations of each protein and its corresponding mRNA requires six 
coupled rate equations of the generic form: 
 dmj /dt = -λmmj + γ/(1 + Kpj-1

n) + γo      (7a) 
dpj /dt = -λppj + ζmj.        (7b) 

 
The index j = 1 - 3 refers to species A, B and C periodically (that is, j = 0 is species C).  
Here, all proteins have the same rate parameters, as do all types of mRNA: the rates do 
not depend on the protein species A, B or C.  However, the degradation rates (λm and 
λp) and production rates (γ and ζ) are different for mRNA and proteins.  Other than the 
fact that twice as many equations are required for determining the concentrations of 
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both protein and mRNA, the only new term to appear here is γo, which allows for the 
production of each protein even when its associated repressor concentration is at 
saturation. 
 
 The appearance of these equations can be improved with the usual conversion to 
dimensionless variables, as done in reducing Eq. (6).  The six equations have a large 
parameter space, but the starting point for their solution is the same as that outlined in 
Control 2: find the steady state solutions and then evaluate their stability and other 
properties.  Some of the steps in the process are easy, others require numerical 
evaluation.  For example, imposing dpj /dt = 0 on Eq. (7b) immediately yields 
 λppj,ss = ζmj,ss,         (8) 
 
for the steady-state concentrations of each of the three protein - mRNA pairs.  To find 
the individual concentrations, we impose dm/dt on Eq. (13.51a) to obtain 

λmmj = γ/(1 + Kpj-1
n) + γo       (9) 

 
Substituting Eq. (8) gives 
 mj = (γ/λm)/[1 + K(ζmj-1 /λp)n] + (γo/λm)     (10) 
 
Each mj is related to its neighbor through an equation like this, so that m satisfies the 
iterative equation mj = H{H[H(mj)]} for a function H(m).  Hence, mj = H(mj) is an allowed 
solution for monotonically decreasing H(m), and the steady-state solution satisfies 
 m = (γ/λm)/[1 + K(ζm /λp)n] + (γo/λm).     (11) 
 
The stability analysis of the solution can be performed as in Control 2. 
 
 The stability analysis reveals that there are large regions of parameter space 
where the steady-state solutions become unstable and, as a result, oscillatory (for 
example, see Chapter 19 of Phillips et al. (2008).  This is in contrast to the two-protein 
switch model where at least one stable steady state was present for any value of the 
parameter α. 
 


