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4xx Intro 4 - Soft materials and the Boltzmann factor 
 
Protein size 
• 1000 base pairs of DNA  <-->  330 amino acids @ 3 bp/AA 
• 115 D per amino acid, averaged over a large protein 
• for actin, 375 x 115 = 43,000 D (actual is 42,000 D) 
• mass = 4.3 x 104 x 1.67 x 10-27 = 7.0 x 10-23 kg 
• if density = 103 kg/m3, globule occupies a volume of 7.0 x 10-23 / 103 = 7.0 x 10-26 m3 
• radius of equivalent sphere is R = (3 x 7.0 x 10-26 / 4π)1/3 = 2.6 nm 
 
Size of structural elements 
 
 
 
 
  filament of 8 nm or more     bilayer of 5 nm or less 
 
Structural elements are soft 

rhodamine-labelled actin (bar = 5 µm) (from Isambert et al.) 

 
 

bilayers (from Yeung and Evans) 

 
 
 
 
 
 

~3R        <2R 
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Energy scales 
 
Binding of atoms within a molecule tends to be much stronger than the binding between 
molecules.  Covalent bonds within a molecule have energies that are at least a hundred 
times the thermal energy scale kBT: 
____________________________________________________ _________ 
  Bond           Energy  
                                            (kJ/mol)           (eV/bond)                    (kBT/bond)     

 C - C  350   3.6   140 
  C - O  310   3.2   124 
  C - H  415   4.3   166 
  O - H  463   4.8   186 
  C = C  610   6.3   244 
  C = O  740   7.7   299 
  C ≡ C  836   8.7   338 
__________________________________________________________________ 

[1 kJ/mol = 1.04 x 10-2 eV/bond = 0.40 kBT/bond] 
 
Hydrogen bonds within and between segments of molecules, such as between base 
pairs in DNA are much weaker, but still larger than kBT (H-bonds are indicated by  • • •) 
__________________________________________________________________ 
         Hydrogen bond    Energy 
                                                           (kJ/mol)             (eV/bond)              (kBT/bond)   
  C - H • • • N  12 - 20  0.13 - 0.21         5 - 8 
  C - H • • • O      24       0.25   10 
  N - H • • • O  16 - 24  0.17 - 0.25         6 - 10 
  O - H • • • O  20 - 28  0.21 - 0.29         8 - 11 
  F - H • • • O      44       0.46   18 
__________________________________________________________________ 
 
The deformations of soft materials, which do not involve bond-breaking, involve smaller 
energy scales again. 
 
Temperature and entropy 
 
Any configuration available to a system can be characterized by its energy (more than 
one configuration may have the same energy).  At T > 0, the system samples many 
configurations as it exchanges energy with its environment.  To see how the energy 
fluctuations, let's examine two systems, L and S, in thermal contact. 
 

 
 
 
 
 

 
LARGE 

ETOT = EL + ES 

small 
EL >> ES 
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System S is the subject of our observations, while L is the reservoir; L has far more 
energy than S.  We specify that L and S exchange energy only with each other, so that 
their total energy, ETOT, is a constant: 
  ETOT = EL + ES.         (1) 
 
We now specify ETOT to be a particular value Eo, say ETOT = Eo = 106 Joules.  We are 
interested in a particular state r of the small system with energy Er, such that 
  ES = Er  and EL = Eo – Er.       (2) 
 
Just to make sure that the notation is clear: ES, EL and ETOT are general parameters, 
while Er and Eo represent a specific choice of energies. 
 
We define the number of states of the large system having energy EL to be 
 ΩL(EL) = [number of states of large system with EL].    (3) 
 
The number of states of the large system ΩL(EL) varies, perhaps even rapidly, with EL, 
but its logarithm varies more slowly, and can be expanded in a series around the 
specific value EL = Eo: 
 ln ΩL(Eo – Er) = ln ΩL(Eo)  - [∂ ln ΩL / ∂EL]o Er + ....    (4) 
 
where the derivative of ln ΩL with respect to EL is evaluated at EL = Eo.  The minus sign 
in front of the derivative arises because the energy EL of the large system decreases by 
Er when the energy of the small system increases by Er.  Higher order terms can be 
neglected since Er << Eo.  The derivative [∂ lnΩL / ∂EL] o characterizes the large system 
around EL = Eo, and does not depend on Er; hence, it is notationally convenient to 
replace this derivative with a single symbol 
 [∂ lnΩL / ∂EL ]o ≡ β.         (5) 
 
It can be shown that β -1, bearing units of energy, has the properties of a temperature; 
the physical temperature scale is set through T = 1 / kBβ, where kB is Boltzmann's 
constant (kB = 1.38 x 10-23 J/K). 
 
Returning now to Eq. (4), the derivative on the right-hand side can be replaced by β 
 ln ΩL(Eo - Er) = ln ΩL(Eo) - βEr + .... , 
⇒ ΩL(Eo - Er) = ΩL(Eo) exp(-βEr).       (6) 
 
The number of configurations available to a system affects its behavior at finite 
temperature.  For instance, the molecules of a gas are more likely to be found scattered 
throughout the volume of a container than collected together in one of its corners, all 
other things being equal.  Mathematically, we say that a system at fixed volume 
minimizes its free energy E - TS, rather than just minimizes its energy E, where S 
denotes entropy; an even more general expression for the free energy is needed if the 
volume or the number of particles is not fixed.  Entropy increases logarithmically with 
the number of states Ω accessible to the system, 
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 S = kB ln Ω(<E>),         (7) 
 
where Ω is a function of the mean energy <E> of the system (see Sec. 6.6 of Reif, 
1965).  Because TS enters the free energy with a minus sign, the free energy of a 
system falls as its entropy rises, a process that can occur spontaneously. 
 
Boltzmann factor 
 
We have selected a particular state r of the small system with energy Er.  The probability 
Pr of the small system being in this state is proportional to the number of states of the 
large system having the appropriate value of EL; that is, Pr ∝ ΩL(Eo - Er) or   
 Pr ≡ A ΩL(Eo - Er),         (8) 
 
where the proportionality constant A is a characteristic of the large system.  The value of 
A can be determined through the condition that the small system must always occupy 
an available state, although it may occupy different states as time passes: 
 Σr Pr  = 1,          (9) 
 
where the sum is over all of the states r available to the small system.  We replace  
ΩL(Eo - Er) in Eq. (8) by its functional dependence on Er in Eq. (6) to obtain 
  Pr = A ΩL(Eo - Er) = [A ΩL(E o)] exp(-βEr).      (10) 
 
This is the Boltzmann factor, and it shows that the probability of the small system being 
in a specific state r with energy Er is a function of the energy of the state r and of the 
temperature of the large system with which it is in thermal contact.  The two factors in 
the square braces of Eq. (10) are both constants, and can be rolled into one as 
 Pr = Z -1 exp(-βEr).         (11) 
 
To be properly normalized, 
 Z = Σr exp(-βEr).         (12)  
 
Example: harmonic oscillator 
 
As an application of the Boltzmann factor, we consider the one-dimensional motion of a 
particle in the quadratic potential V(x) characteristic of Hooke's law for springs, 
 V(x) = kspx2 / 2,         (13) 
 
where ksp is the spring constant and x is the displacement from equilibrium.  For a given 
value of x, Eq. (13) is the corresponding potential energy, and the Boltzmann factor 
exp(-βkspx2/2) provides the likelihood that the particle can be found with that energy. 
 
Now, x is a continuous variable, so one talks of the probability P(x)dx of the particle 
having a displacement between x and x + dx.  The continuous version of Eq. (12) is 
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  P(x)dx = dx • exp(-αx2) / ∫ exp(-αx2) dx,      (14) 
 
where the combination βksp/2 has been replaced with a single constant α  
 α ≡ βksp/2.          (15)  
 
Eq. (14) can be used to evaluate the fluctuations in x about x = 0: 
 <x2> = ∫ x2 P(x) dx  
  = α-1 ∫ z2 exp(-z2) dz / ∫ exp(-z2) dz 
  = α-1 (√π / 2) / √π = 1 / 2α.       (16) 
where the integrals over x run from -∞  to +∞.  Hence 
 <x2> = 1 / βksp = kBT/ksp.        (17) 
 


