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4xx Intro 5 - Forces and movement in a viscous environment 
 
Even if the shear modulus vanishes, the response of a fluid to an applied force is not 
instantaneous.  At low speeds, the response time of a fluid to accommodating an 
applied stress depends on the viscosity, η, among other factors.  Consider one means 
of measuring η: flat plate of area A on one side is pulled along the surface of the fluid 
with a force F, giving a shear stress of F/A. 

 
 
 
 
 
 
 

 
If the material in the figure were a solid, it would resist this stress until it attained a 
deformed configuration where the applied and reaction forces were in equilibrium.  But a 
fluid doesn't resist shear, and the floating plate continues to move at a speed v as long 
as the stress is applied:   
 F /A = η (v /h),         (1) 
 
where h is the height of the liquid in its container.  Note that the fluid is locally stationary 
at its boundaries: it is at rest at the bottom of the container and moving with speed v 
beside the plate. 
 
Elastic quantities such as the bulk modulus or shear modulus appear in Hooke’s law 
expressions of the form [stress] = [elastic modulus]•[strain].  Strain is a dimensionless 
ratio like the change in volume divided by the undeformed volume, so elastic moduli 
must have the dimensions of stress.  Eq. (1) is different from this, in that the ratio v/h is 
not dimensionless but has units of [time]-1, so that η has dimensions of 
[force/area]•[time], or kg/m•s in the MKSA system.  Thus, η provides the time scale for 
the relaxation, as expected.  Viscosity is often quoted in units of Poise or P, which has 
the equivalence of kg/m•s ≡ 10 P. 
 
 Fluid                                 η (kg/m•sec)  η (P) 
 Air    1.8 × 10-5  1.8 × 10-4 
 Water    1.0 × 10-3  1.0 × 10-2 
 Olive oil   0.084    0.84 
 Glycerine   1.34   13.4 
 Glucose   1013   1012 

 mixtures: blood  2.7 × 10-3  2.7 × 10-2 

 
 

h 

v 
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Translational drag 
 
The relationship between the drag force Fdrag and the speed v depends on the shape of 
the object among other things, so for the time being we will simply write the relationship 
as 
 Fdrag = c1v  (low speeds, streamline flow)          (2a) 
 Fdrag = c2v2,  (high speeds, turbulent flow)          (2b) 
 
where the constants c1 and c2 depend on a variety of terms.  Note that the power 
required to overcome the drag force, obtained from [power] = Fv, grows at least as fast 
as v2 according to Eq. (2).  Relatively speaking, viscous forces are so important in the 
cell that we need only be concerned with the low speed behavior of Eq. (2a). 
 
Let's now solve the motion of an object subject only to linear drag in the horizontal 
direction, omitting gravity.  The object obeys Newton’s law F = ma = m (dv/dt), so that 
the drag force from Eq. (2a) gives the relation 
 ma = m (dv/dt) = -c1v,        (3) 
 
where the minus sign indicates that the force is in the opposite direction to the velocity. 
Eq. (3) can be rearranged to read 

dv/dt = -(c1/m) v,         (4) 
 
which relates a velocity to its rate of change.  The solution is exponential in form, 
because 
 dex/dx = ex.          (5) 
 
One can verify Eq. (5) by explicit substitution, finding 
 v(t) = vo exp(-c1t / m),        (6) 
 
where vo is the speed of the object at t = 0. 
 

The characteristic time scale for the velocity to decay to 1/e of its original value is 
m/c1.  The time-dependence of the distance can be found by integrating Eq. (2.15) to 
yield: 
 Δx = (mvo / c1) • [1 - exp(-c1t / m)],       (7) 
 
where the limiting value at t → ∞ is x = mvo / c1. 
 
The drag force also depends on the cross sectional shape that is presented to the fluid 
by the object in its direction of motion. 
 
Stokes’ law for a sphere of radius R 
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F = 6πηRv.           (8) 
 

An ellipsoid of revolution with semi-major axis a and semi-minor axis b 
 F = 4πηav / {ln(2a/b) - 1/2},        (9) 
 
when a >> b for motion at low speed parallel to the long axis of the ellipsoid. 
 
At higher speeds, the drag force for translational motion depends on the square of the 
speed and the shape of the object: 
 F = (ρ/2)ACDv2,         (10) 
 
where ρ is the density of the fluid and A is the cross sectional area of the object in its 
direction of motion (πR2 for a sphere).  The dimensionless drag coefficient CD is often 
about 0.5 for many shapes of interest.  Note that the drag force in Eq. (10) depends on 
the density of the fluid, rather than its viscosity η in Eqs. (8) and (9). 

 
 
Rotational drag 
 
The stress experienced by the surface of an object moving through a viscous fluid can 
retard the rotational motion of the object, as well as its translational motion.  The effect 

Example:  Consider an idealized bacterium swimming in water, assuming: 
• the bacterium is a sphere of radius R = 1 µm 
• the fluid medium is water with η = 10-3 kg / m•s 
• the density of the cell is that of water, ρ = 1.0 × 103 kg/m3 
• the speed of the bacterium is v = 2 × 10-5 m/s. 
What is the drag force experienced by the cell?  If the cell’s propulsion system were 
turned off, over what distance would it come to a stop (ignoring thermal contributions to 
the cell’s kinetic energy from the its environment)? 
 
First, we calculate the prefactor c1 in Eq. (2a) 
 c1 = 6πηR = 6π • 10-3 • 1 × 10-6 = 1.9 × 10-8 kg/s, 
so that the drag force on the cell can then be obtained from Stoke's law: 
 Fdrag = c1v = 1.9 × 10-8 • 2 × 10-5 = 0.4 pN.  (pN = 10-12 N) 
 
To determine the maximum distance that the cell can drift without propulsion, we first 
calculate the mass of the cell m, 

m = ρ • 4πR 3 /3 = 103 • 4π (1 × 10-6)3 /3 = 4.2 × 10-15 kg, 
from which the stopping distance becomes, using Eq. (7) 
 x = mvo /c1 = 4.2 × 10-15 • 2 × 10-5 / 1.9 × 10-8 = 4.4 × 10-12 m = 0.04 Å. 
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of rotational drag is to produce a torque τ that reduces the object’s angular speed ω with 
respect to the fluid.  At low angular speed, the torque from drag is linearly proportional 
to ω, just as the linear relation Eq. (2a) governs translational drag: 
 τ = -χω.          (11)  
 
where the minus sign indicates τ acts to reduce the angular speed (counter-clockwise 
rotation corresponds to positive ω).  For a sphere of radius R, the drag parameter χ is 
 χ = 8πηR 3,          (12) 
 
and for an ellipsoid of revolution 

χ = (16/3) πηab2  (a >> b)      (13) 
 
where η is the viscosity of the medium.   
 
It’s straightforward to solve for the functional form ω(t) of the angular speed and θ(t) of 
the angle swept out by the object.  For instance, if the rotation is about the longest or 
shortest symmetry axis of the object, then the torque produces an angular acceleration 
α that determines ω(t) via 
 τ = Iα = I (dω/dt) = -χω,        (14) 
 
where I is the moment of inertia about the axis of rotation.  For a sphere of radius R, I = 
mR2/2.  Eq. (14) determines the functional form of ω(t): 

ω(t) = ωo exp(-χt / I),         (15) 
 
where ωo is the initial value of ω.  Integrate Eq. (15) to obtain θ(t). 
 

 
As a final caveat, most readers with a physics background are aware that the kinematic 
quantities ω, α, and τ are vectors and I is a tensor.  Thus, the situations we have 
described are specific to rotations about a particular set of axes through an object.  

Example:  Consider an idealized bacterium swimming in water, assuming: 
• the bacterium is a sphere of radius R = 1 µm 
• the fluid medium is water with η = 10-3 kg / m•s 
• the bacterium rotates at a frequency of 10 revolutions per second. 
Find the retarding torque from drag experienced by the cell. 
 
First, the frequency of 10 revolutions per second corresponds to an angular frequency 
of ω = 20π s-1.  Next, the prefactor χ in Eq. (12) is 
 χ = 8πηR3 = 8π • 10-3 •  (1 × 10-6)3 = 8π × 10-21 kg-m2/s, 
so that the magnitude of the drag torque on the cell can then be obtained from: 
 τdrag = χω = 8π × 10-21 • 20π = 1.6 × 10-18 N-m. 
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When ω and τ have arbitrary orientations with respect to the symmetry axes, the motion 
is more complex than what has been described here. 
 
 
Reynolds number 
 
As seen in the examples, the effect of drag easily overwhelms the cell’s inertial 
movement at constant velocity that follows Newton’s First Law of mechanics.  In fluid 
dynamics, a benchmark exists for estimating the importance of the inertial force 
compared to the drag force.  This is Reynolds number, a dimensionless quantity given 
by 
 
 R = ρ v l / η,          (16) 
 
where v and l are the speed and length of the object, and ρ and η are the density and 
viscosity of the medium, all respectively.  The crossover between drag-dominated 
motion at small R and inertia dominated motion at large R is in the range R ~ 10-100. 
 
Let’s collect the terms on the right hand side of Eq. (16) into properties of the fluid (ρ/η) 
and those of the object (vl); for water at room temperature, ρ/η is 106 s/m2.  Common 
objects like fish and boats, with lengths and speeds of metres and metres per second, 
respectively, have vl in the range of 1-1000 m2/s.  Thus, R for everyday objects moving 
in water is 106 or more, and such motion is dominated by inertia, even though viscous 
effects are present.  This conclusion also applies for cars and planes as they travel 
through air, where ρ/η is 0.5 × 105 s/m2 under standard conditions.  However, for the 
motion of a cell, the product vl is far smaller: even if l = 4 µm and v = 20 µm/s, then vl 
= 8 × 10-11 m2/s, such that R is less than 10-4.  Clearly, this value is well below unity so 
the motion of a typical cell is dominated by viscous drag.  In the context of Reynolds 
number, the reason for this is the very small size and speed of cells compared to 
everyday objects. 
 
 
 
 
 


