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PHYS 4xx Mem 3 - Mechanical instability and failure 
 
When a membrane is stretched under a small tension, its area increases according to 
the area compression modulus KA.  But if the tension is large enough, the membrane 
fails at a few percent strain.  It's not that that the membrane disintegrates into individual 
molecules, but rather that a hole forms in it.  The boundary of the hole, where it is in 
contact with the aqueous medium, could be viewed in a couple of way: 
 

 
 
 
 
 
In (a), the hydrocarbon chains are exposed to water, while in (b), the molecular packing 
defoms to hide the hydrocarbon tails.  In either case, there is an energy penalty 
involved, which we parametrize as an edge tension λ, an energy per unit length, 
analogous to the surface tension γ.  Thus: 
 [boundary energy] = λ [boundary length]. 
 
Note: this is an oversimplification - λ is probably curvature-dependent. 
 
Vesicle formation: edge energy vs. bending energy 
 
The edge tension λ is what causes a fluid sheet to close up into a vesicle, and it must 
have a minimum value in order to overcome the bending resistance of the membrane.  
Consider the two configurations 

 
 
 
 
 
 
The (closed) vesicle shape on the left has a radius RV.  If the sphere and disk have the 
same area, the radius of the disk must be 2RV according to 4πRV

2 = πRdisk
2. 

 
In the simplest curvature model, the energy Esphere required to bend a flat membrane into 
the shape of a sphere is independent of the sphere radius, and is given by 
 Esphere = 4π(2κb + κG), 
 
where κb and κG are the bending rigidities.  This energy may be compared to that of a 
flat disk with a free boundary,  
  Edisk = 4πRVλ. 
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If RV is small, Esphere > Edisk so that the disk is favored.  However, the disk energy 
increases with perimeter, and the sphere becomes the preferred shape for radii above 
 RV* = (2κb + κG) / λ. 
 
At non-zero temperature, the curvatures of the surface and the boundary fluctuate 
locally.  Because of their entropy, these shape fluctuations favor the "magic carpet" 
configuration of the left-hand panel over the handbag in theright-hand panel.  
 

  
 
Simulations show that the sheet closes only if λ exceeds a threshold value of 
 λ* = 1.36 kBT /b   
where b is a length scale from the simulation. 
 
Membrane rupture: edge energy vs. tension 
 
Let's examine the role of edge energy in the failure of a membrane under tension.  At T 
= 0, the system acts to minimize its enthalpy H, 
 H = E - τA, 
where τ is the two-dimensional tension (τ > 0 is tension, τ < 0 is compression). 
 
The energy of a circular hole in the sheet is E = 2πRλ, and the area difference of the 
sheet + hole system with respect to the intact sheet is just πR2, where R is the radius of 
the hole.  Hence, ΔH of the membrane + hole system compared to the unbroken 
membrane is 
 ΔH = 2πRλ - τ πR2. 
 
This function is plotted in panel (a): 
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The  maximum value of ΔH occurs at a hole radius of 
 R* = λ / τ. 
The physical meaning of R* is that at zero temperature, holes with R < R* shrink, while 
those with R > R* expand without bound. 
 
The effect of temperature (T > 0) is to soften the effective edge energy λ, as shown in 
panel (b) above.  The peak in the free energy as a function of perimeter means that 
there is a barrier between the intact and ruptured states: the intact state is metastable 
so long as the edge tension is high enough.  From simulations, the critical value of the 
edge tension is 
 λ* = 1.66 kBT /b, 
where b is the mean separation between network points in the simulation.  The phase 
diagram is: 
 

 
 
 
 
 
 
Measured edge tensions  
 
A variety of techniques have been developed over the past 35 years to measure the 
edge tension.  For example, Zhelev and Needham place a pure bilayer vesicle under 
pressure by aspirating it with a micropipette.  Applying an electric field across the 
vesicle thins the bilayer, creating a hole.  The surface stress can be calculated from the 
aspiration pressure, and the radiius of the hole can be found from the rate of fluid loss. 
 

 
 
 
 
 
 
λ = 0.9 × 10-11 J/m for pure stearoyl-oleoyl phosphatidylcholine (SOPC) 
λ =  3 x 10-11 J/m for SOPC with 50 mol% cholesterol. 
λ ~ 0.7 × 10-11 J/m for dipalmitoyl phosphatidylcholine (diPPC); Taupin et al. (1975). 
λ ≅ 1.5 × 10-11 J/m for DOPC bilayers 
 
Interpretation 
If the hole boundary is curved as in the right-hand panel of the first figure, then λ ∝ κb; 
this has been confirmed for lipids with nc = 13 to 22 (Rawicz et al, 2000). 
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Simulations predict λ* > kBT/b, where b is the elementary length scale of the simulation.  
Taking b ~ dbl ~ 4 × 10-9 m, the simulations predict λ* > 10-12 J/m to achieve membrane 
stability; measured values are about an order of magnitude higher than this, meaning 
that bilayers are stable against thermal fluctuations. 
 
 


