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PHYS 4xx Mem 4 - Surface curvature 
 
Polymer curvature is described by the unit tangent vector t = ∂r/∂s and the curvature C ≡ 
n•(∂t/∂s) = n•(∂2r/∂s2), where n is the normal to the curve at position r and where s is the 
arc length.  Generalize this to a surface through a choice of coordinates and 
representation: for example, a set of basis vectors u,v embedded in the surface itself: 
 

 
 
 
 
 
 
 
A common approach in membrane studies employs Cartesian coordinates to write a 
point r on the surface as 
 r = [x, y, h(x,y)],         (1) 
 
where h is the "height" away from the xy plane.  Unfortunately, h(x,y) may not be single-
valued as illustrated by the overhang region panel (b).   
The Monge representation is an approximation in which overhangs are forbidden. 
 
Analytical geometry within the Monge Representation 
 

 
 
 
 
 
 
 
Construct two tangent vectors by making a unit step in the x and y directions, and a step 
∂h/∂x ≡ hx in the z-direction: 
 ∂xr = (1, 0, hx) = (1, 0, ∂xh)   (dimensionless)   (2a) 
 ∂yr = (0, 1, hy) = (0, 1, ∂yh),        (2b) 
 
where ∂x ≡ ∂/∂x and hx = ∂xh.  Note: ∂xr and ∂yr are not unit vectors, and are not generally 
orthogonal; however, they define the plane tangent to the surface at point [x, y, h(x,y)], 
and can generate the unit normal vector n to the surface via the cross product 
 n ≡ (∂xr) x (∂yr) / |(∂xr) x (∂yr)| = (-hx, -hy, 1) / (1 + hx

2 + hy
2)1/2.   (3) 

 
A segment of length dx along the x-axis corresponds to a vector (∂xr)dx along the 
surface.  The cross product of the vectors (∂xr)dx and (∂yr)dy gives the area element dA 
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on the surface corresponding to dx dy in the coordinate plane: 
 dA = |(∂xr) x (∂yr)| dx dy = (1 + hx

2 + hy
2)1/2 dx dy,    (4) 

 
according to Eq. (2).  The quantity (1 + hx

2 + hy
2) is called the metric g of the surface 

 g ≡ 1 + hx
2 + hy

2 = 1 + (∂xh)2 + (∂yh)2,      (5) 
 
such that dA = √g dx dy. 
 
The curvature of a surface can be obtained from C ≡ n•(∂2r/∂s2).  The curvature is 
direction-dependent; e.g., the curvature of a cylindrical shell of radius R is zero in a 
direction parallel to the cylindrical axis, and 1/R along a circle perpendicular to the axis. 
 
The extremal values of the curvature as a function of direction are called the principal 
curvatures, denoted by C1 and C2; the combinations (C1 + C2)/2 and C1•C2 are the mean 
and Gaussian curvatures, respectively. 
 
To determine the curvature C ≡ n•(∂s

2r), we need Eq. (3) for n, as well as the derivatives 
r' = ∂sr and r" = ∂s

2r: 
 r' = (∂xr)x' + (∂yr)y',         (6) 
 r" = (∂x

2r)(x' )2 + (∂y
2r)(y' )2 + 2(∂x∂yr)x'y' + (∂xr)x" + (∂yr)y",   (7) 

 
where x'  ≡ ∂sx, x" ≡ ∂s

2x etc.  The last two terms in Eq. (7) do not contribute to n•(∂s
2r), 

owing to the orthogonality of n with ∂xr and ∂yr, leaving 
 C = n•r" = bxx(x' )2 + byy(y' )2  + 2bxyx'y'.      (8) 
 
The scalar coefficients bαβ are 
 bαβ ≡ n• (∂α∂βr)   (α, β = x, y).     (9) 
 
Differentiating the orthogonality condition n•(∂αr) = 0 leads to the relation ∂β[n•(∂αr)] = 
n•(∂α∂βr) + (∂βn)•(∂αr) = 0, or, from the definition (9), 
 bαβ = - (∂αr)•(∂βn)   (α, β = x, y).     (10) 
 
The direction-dependence of the curvature is implicit in Eq. (8) through r", the second 
derivative of the position with respect to arc length along a particular direction.  After 
some mathematics to obtain the extremal values 
 (C1+C2)/2 = (gxxbyy + gyybxx - 2gxybxy) / 2g      (11a) 
 C1C2 = (bxxbyy - bxy

2) / g,        (11b) 
 
The metric is the determinant of the metric tensor gαβ, whose components here are 
 gαβ = (∂αr)•(∂βr)   (α, β = x, y).     (12) 
 
We now determine the mean and Gaussian curvatures in the Monge representation.  
First, we evaluate ∂xn using Eq. (3), finding 
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 ∂xn = - { ([1+hy

2]hxx - hxhyhxy), ([1+hx
2]hxy - hxhyhxx), (hxhxx + hyhxy) } / 

   (1 + hx
2 + hy

2)3/2. 
            (13) 
 ∂yn = - { ([1+hy

2]hxy - hxhyhyy), ([1+hx
2]hyy - hxhyhxy), (hxhxy + hyhyy) } / 

   (1 + hx
2 + hy

2)3/2. 
 
where hxx = ∂x∂xh etc.These somewhat intimidating relations can be combined with Eqs. 
(2) and (10) to yield the simple 
 bαβ = hαβ / (1 + hx

2 + hy
2)1/2  (α, β = x, y).     (14) 

 
Lastly, Eqs. (12) and (14) can be substituted into (11): 
 (C1+C2)/2 = {(1+hx

2)hyy + (1+hy
2)hxx - 2hxhyhxy} / 2(1 + hx

2 + hy
2)3/2  (15a) 

 C1C2 = (hxxhyy - hxy
2) / (1 + hx

2 + hy
2)2.      (15b) 

 
For many situations of interest, h(x,y) is a slowly-varying function corresponding to 
gentle undulations, so to leading order 
 (C1 + C2)/2 ≅ (hxx + hyy)/2        (16a) 
 C1C2 ≅ hxxhyy - hxy

2,         (16b) 
 
 

 
 
 
 
 
 
 
 
 
 
To confirm the geometrical meaning of Eq. (16) consider the shape of a surface in the 
region of a minimum or inflection point, as illustrated.  Place the minimum directly over 
the coordinate origin at x=y=0.  A Taylor series expansion describes the height of the 
surface for small regions near the minimum, namely 
 h(x, y) = ho + hxx + hyy + hxxx2/2 + hyyy2/2 + hxyxy + ...,    (17) 
 
where the height at the origin is ho.  For surfaces like a bowl, the derivatives hx and hy 
vanish at the local minimum in height, showing that the surface is quadratic in x and y 
with coefficients proportional to the local curvature.  The curvatures at the saddle point 
in panel(b) have opposite sign: the normals are canted towards each other in the u-
direction, but away from each other in the v-direction; that is Ru•Rv < 0, where Ru and Rv 
are the radii of curvature in the u and v directions, respectively. 
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Membrane bending energy 
 
The simplest form for the energy density of bending deformations is 
 F = (κb/2)(C1 + C2 - C0)2 + κGC1C2,       (18) 
 
where κb and κG are the bending rigidity (or bending modulus) and Gaussian bending 
rigidity (or saddle-splay modulus) respectively.  Introducing the constant term C0, known 
as the spontaneous curvature, permits Eq. (18) to describe bilayers that are curved in 
their equilibrium state because their two (monolayer) leaflets are compositionally 
inequivalent.  The existing measurements are consistent with the rather broad range 0 > 
κG/κb > -2, with notable exceptions. 
 
Membrane persistence length 
 
At T > 0, the membrane fluctuates with local curvatures governed by the membrane 
bending resistance κb (for a closed sphere, the integral of C1C2 over the surface is 
independent of the local fluctuations so the overall energy is insensitive to κG). 
 
The larger κb/kBT, the flatter the membrane and the correlation in <n1•n2> decays 
exponentially with a persistence length ξp characteristic of the membrane.  Determining 
ξp theoretically involves more complicated math than the persistence length of a flexible 
filament.  The proof is performed in Mechanics of the Cell for student interested in the 
details.  Here, we simply quote the result: 
 
 ξp ~ b exp(4πκb / 3kBT),   (19) 
 
where b is the elementary legnth scale of the membrane.  Computer simulations 
(Gompper and Kroll, 1995) are consistent with Eq. (19).  The exponential dependence 
of ξp on the bending resistance of a surface should be contrasted with the linear 
dependence of ξp on the bending resistance of a polymer.   
 
Put another way, it becomes easier to bend a membrane as the temperature increases, 
an observation that can be quantified by an effective bending rigidity 
 
 κ(l) = κb - (3kBT/ 4π) ln(l/b),       (20) 
 
that depends on the length scale l of the undulations: the surface becomes softer when 
viewed at longer wavelengths.   Numerically, if we set b ~ 1 nm, and κb ~ 10kBT, we 
expect ξp ~ 106 km.  Dramatic as this result is, it does not mean that the membranes of 
a cell are planar, only that they undulate smoothly on cellular length scales. 
 

(Peliti and Leibler) 


