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4xx Mem 5 - Charged plate in an electrolyte 
 
 The phosphate group of a phospholipid carries a negative charge which may be 
balanced by the positive charge borne by many lipid-head groups.  An exception is the 
serine group, which is electrically neutral, leaving the phospholipid negative overall.  
Thus, a bilayer made from the common phospholipids may have a negative surface 
charge density.  For an area per head-group of 0.5 nm2 in the bilayer plane, this charge 
density could be as high as 0.3 C/m2 if each lipid carried a single electron charge (1.6 × 
10-19 C).  Overall, the membrane and its environment is electrically neutral, so that 
positive counterions must be present in the media adjacent to the membrane.  In this 
lecture, we examine the distribution of mobile ions surrounding a charged object with 
fixed geometry. 
 
Poisson-Boltzmann equation 
 
We first develop a mean field description of charge distributions that includes the effects 
of temperature.    We'll need Gauss' law, which has the integral form 
 ∫ E•dA = (1/ε) ∫ ρch dV,        (1) 
 
and differential form 

∇•E = ρch/ε,          (2) 
 
where ε is the permittivity of the medium (in vacuum, εo = 8.85 × 10-12 C2/Nm2).  The 
charge density ρch is not a number density - it's the charge per unit volume (in C/m3 in 
MKSA units).  The integrals in Eq. (1) are performed over a closed surface with area ∫dA 
and enclosed volume ∫dV. 
 
 Now, electric field E and potential ψ are related by E = -∇ψ.  Replacing E by -∇ψ  
permits Eq. (2) to be recast in a form called Poisson's equation 
 
 ∇2ψ = - ρch/ε.     (3) 
 
The charge distribution reflects a competition between energy and entropy: mobile 
positive ions cluster near a negatively charged bilayer at low temperature, but roam 
further afield at high temperature.  The density of counterions at a given position is 
proportional to the Boltzmann factor with a potential energy evaluated at that position.  
We assume for now that only one species of mobile ion is present, each ion with charge 
q experiencing a potential energy V(r) = qψ(r).  Defining ρo to be the number density of 
ions at the reference point ψ = 0, the Boltzmann expression for the density profile is 
 ρ(r) = ρo exp(-qψ(r)/kBT).        (4) 
 
Here, the electrostatic potential ψ represents an average over local fluctuations in the 
ion's environment.  This form for ρ(r) can be substituted into the Poisson expression of 

Poisson's equation 



PHYS 4xx Mem 5  2 

2010 by David Boal, Simon Fraser University.  All rights reserved; further copying or resale is strictly prohibited. 

Eq. (3) using ρch(r) = qρ(r) to give the Poisson-Boltzmann equation, which is a 
differential equation in ψ 
 ∇2ψ = - (qρo/ε) exp(-qψ(r)/kBT).       (5) 
 
Eq. (5) can easily be generalized to include more than one species of charge. 
 
Charged plate with one counterion species 
 
 In most introductory physics courses, the integral form of Gauss' Law is used to 
find the electric field from a large flat plate carrying a charge density σs in the absence of 
counterions in the surrounding medium.  One finds that the magnitude of the electric 
field must be E = |σs| / 2ε, independent of the distance from the plate.  Since the electric 
field is the (negative) derivative of the potential, E = -∇ψ, a constant value for E implies 
that the magnitude of ψ must grow linearly with z as σsz / 2ε.  As usual, the location 
where the potential vanishes can be chosen arbitrarily. 
 

Now, let's add counterions to one side of the plate, taking the plate to be negative 
and the counterions positive: 

 
 

 
 
 

At low temperature, the counterions cluster near the plate, their density ρ falling with 
distance z from the plate 
 

 
 
 
 
We choose the origin of the z-axis to lie at the plate boundary, where we fix ψ = 0.  If the 
field is independent of direction parallel to the plate, the only non-vanishing part of ∇2ψ 
is d2ψ / dz2 and Eq. (5) reads 
 d2ψ / dz2 = -(qρ0/ε) exp(-qψ / kBT).       (6) 
 
It is useful to incorporate the constants q / kBT into the potential to render it unitless 
through the definition 
 Ψ(z) ≡ qψ(z) / kBT,         (7) 
 
such that Eq. (6) becomes 
 d2Ψ / dz2 = -ρo(q2 / εkBT) e-Ψ.       (8) 
 
The combination q2 / εkBT in this equation has units of [length] and appears in the 

Poisson-Boltzmann equation 
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Bjerrum length lB: 
 lB ≡ q2 / 4πεkBT.         (9) 
 
Through q and ε, the quantity lB depends upon the properties of the counterions and the 
medium, not on the charge density of the plate.  For instance, the Bjerrum length of a 
single electron charge in air at room temperature is 58 nm, dropping to 0.7 nm in water 
where the permittivity is eighty times that of air.  At this point, we introduce yet another 
parameter K, which has the units of [length]-1, by 

K 2 ≡ 2πlBρo,          (10) 
 
to further simplify the appearance of the Poisson-Boltzmann equation: 
 d2Ψ / dz2 = -2K 2e-Ψ.         (11) 
 

To solve Eq. (11), we first multiply both sides by dΨ/dz and then use the 
following two relations 

(dΨ/dz)•(d2Ψ/dz2) = (1/2)•d[(dΨ/dz)2]/dz      (12) 
 
 e-Ψ (dΨ/dz) = - d(e-Ψ)/dz,        (13) 
 
to rewrite the equation as 
 d[(dΨ/dz)2]/dz = 4K 2 d(e-Ψ)/dz.       (14) 
 
Integrating this expression over z and taking the square root of the result gives 
 dΨ/dz = 2K e-Ψ/2,         (15) 
 
where the positive root is chosen to correspond to 
 

 
 
 
 
The integration constant that should appear in Eq. (15) has been set equal to zero 
permitting the electric field, which is proportional to dΨ /dz, to vanish at the large values 
of Ψ expected as z → ∞.  Eq. (15) can be integrated easily by rewriting it as 
 ∫ eΨ/2 dΨ = 2K ∫dz,         (16) 
 
which gives 
 eΨ/2 = K(z + χ),         (17) 
 
where the integration constants have been rolled into the factor χ. 
 
 We have now established that the functional form of e-Ψ is [K(z + χ)]-2, allowing us 
to generate an expression for the charge density from ρ = ρoe-Ψ: 
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 ρ(z) = ρo / [K(z + χ)]2 = 1 / [2πlB (z + χ)2].      (18) 
 
The integration constant is fixed by the value of the surface charge density σs.  For the 
system to be electrically neutral, the integral over the positive charge density ∫qρ dz 
must equal σs in magnitude (recall ρ is a number per unit volume); in symbols 
 -σs = (q / 2πlB) ∫ dz / (z + χ)2,       (19) 
 
where the integral covers 0 ≤ z ≤ ∞.  The solution to this equation requires the distance 
χ to be 
 χ = q / (-2πlBσs) = 2εkBT / (-qσs),       (20) 
 
which is positive because q and σs have opposite signs here. There are several features 
to note about the form of the number density of counterions.  First, the density falls like 
the square of the distance from the plate, with half of the counterions residing within a 
distance χ of the plate.  Second, from Eq. (20), the width of the distribution grows 
linearly with temperature, as the counterions venture further into the surrounding 
medium. 
 
Charged plate in a salt bath 
 
 Both the interior of a cell and the environment surrounding it contain various 
organic compounds as well as ions released from salts such as NaCl, which we will 
refer to as "bulk" salts or ions.  The effect that a negatively charged bilayer has on these 
bulk ions depends upon their charge: the density of positive ions is enhanced near the 
plate while negative mobile ions are depleted.  The distributions are shown 
schematically in the figure, where ρ+(z) and ρ-(z) are the number densities of positive 
and negative ions carrying charges +q and -q, respectively. 
 

 
 
 
 
 
The effect of the electrolyte is to "screen" the charge of the plate, which then modifies 
the distribution of counterions.  We don't have time to cover this in lectures, but the 
system is treated in Sec. 9.2.3 of Mechanics of the Cell. 
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