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4xx Mem 6 - Van der Waals and electrostatic interactions 
 
 Lecture Mem 5 examined the distribution of mobile counterions around a single 
charged plate.  We now extend our analysis to consider two rigid plates experiencing: 
• the van der Waals force between electrically neutral materials 
• the electrostatic force between charged objects. 
 
van der Waals forces 
 
 What is often labeled the van der Waals force between neutral atoms or 
molecules arises from a number of effects, including: 
• the attractive interaction between electric dipole moments (Keesom) 
• the attraction between permanent electric dipoles and induced dipoles in a 

neighboring molecule (Debye) 
• the attraction between fluctuating dipole moments created by instantaneous 

movement of the electrons in an atom (London), 
The potential energy associated with each of these angle-averaged contributions is 
proportional to r -6, so they are often collectively written as 
 Vmol(r) = -Cvdwr -6,         (1) 
 
where r is the separation between molecules and Cvdw is a constant.  The subscript mol 
indicates that Eq. (1) applies to molecules.  The complete van der Waals potential 
between molecules also includes a short-range repulsive term proportional to +r -12. 
 
 The interaction energy between aggregates such as sheets and spheres can be 
obtained by integrating the molecular potential Vmol.  Of interest for the cell boundary is 
the interaction energy per unit area between two rigid slabs separated by a distance Ds,  
 

 
 
 
 
 
For a molecular potential energy of the form Vmol(r) = -Cvdw/r n under the assumption of 
pairwise addition of forces, the energy per unit area on one slab (B) due to its interaction 
with the other (A) is (from Prob. 9.19, MoC2) 

Vslab(Ds)/A =  -2πρ2Cvdw / (n-2)(n-3)(n-4)Ds
n-4,     (2) 

 
where ρ is the molecular density of the medium (i.e., the number of molecules per unit 
volume).  The slabs are much thicker than the gap between them, and they extend to 
infinity in directions parallel to the gap.  Substituting n = 6 of the van der Waals 
interaction into Eq. (2) gives 
 Vslab(Ds)/A =  -πρ2Cvdw / 12Ds

2.       (3) 
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Other geometries possess different Vslab for the same Vmol: 

•thin sheet interacting with a semi-infinite slab: Vslab(Ds)/A = -πCvdwρ
2dsh / 6Ds

3, 
•two thin, rigid sheets Vslab(Ds)/A = -πCvdwρ

2dsh
2 / 2Ds

4.   
where Ds is the thickness of the sheet.  Comparing Eq. (3) with these two results shows 
that the energy density decreases faster with distance as the sheets become thinner. 
 
 If the materials A and B are dissimilar, then ρ2 in Eq. (2) is replaced by the 
product of their densities ρAρB.  The combination π2CvdwρAρB is defined as the Hamaker 
constant, having a value of about 10-19 J or 25kBT for many condensed phases 
interacting across a vacuum.  The presence of a medium between the plates reduces 
the van der Waals energy density, although the reduction is not completely exponential 
in distance,  
 

The van der Waals interaction between plates results in a pressure P, which can 
be obtained from the change in the energy density per unit area V(Ds)/A by 
 P = -d(V(Ds)/A) / dDs,        (4) 
 
where P < 0 corresponds to attraction.  As applied to Eq. (3), this yields 
 P = -πρ2Cvdw / 6Ds

3,         (5) 
 
for two slabs; the attractive pressure decreases more rapidly than this for sheets whose 
thickness is much less than their separation.  To estimate the importance of the van der 
Waals interaction between bilayers, we consider two blocks of hydrocarbons, which we 
represent as aggregates of methyl groups with Cvdw ~ 0.5 × 10-77 J•m6 and ρ = 3.3 × 1028 
m-3 (from Table 11.1 of Israelachvili, 1991).  With these values, the pressure from Eq. 
(5) is the dotted line in the figure: 
 
 

 
 
 
 
 
 
 
 
Charged plates with counterions 
 
 As a first step towards understanding the forces between charged membranes, 
we calculate the electric field E between two rigid charged plates in the absence of 
positive counterions.  The plates, which extend to infinity, are separated by a distance 
Ds; they carry a charge density of σs and are immersed in a medium with permittivity ε, 
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which equals the product of the dielectric constant and εo, the permittivity of free space.  
As described in Lec. Mem 5, the magnitude of the electric field E from one plate is E = 
σs/2ε.  For two parallel plates of the same charge density, including the sign, E vanishes 
between the plates and is equal to σs/ε outside the plates.  That is, the fields from each 
plate cancel because they point in opposite directions between the plates. 
 
 Now, let us introduce some (positive) counterions into the space between the 
plates 
 

 
 
 
If a single positive ion were placed between the plates, it would experience no net force 
because E = 0.  However, a group of positive ions, initially spread throughout the space 
between the plates, would be driven towards the plates by their mutual repulsion.  At 
finite temperature, the ions have thermal energy, allowing them to wander away from 
the plates and into the medium.  This cloud of counterions at the plate is referred to as 
the electric double layer. 
 
 Our next step is to obtain the potential ψ(z) in Eq. (5) of Lec. Mem 5.   The mirror 
symmetry of the system means that the potential and charge distribution must be 
symmetric about the midplane (z = 0), where we choose ψ(0) = 0.  The counterion 
density has a minimum and the potential has an extremum (depending on its sign) at 
the midplane: dρ/dz = 0 and dψ/dz = 0: 
 

 
 
 
 
Imposing the condition of overall electrical neutrality means that the integral of the 
counterion charge density ρch = qρ from z = 0 to z = Ds/2 must equal σs in magnitude: 
 σs = -q ∫ 0

Ds/2 ρ dz,         (6) 
 
where the minus sign arises because σs and qρ have opposite signs.  Poisson's 
equation [Eq. (3) of Mem 5], can be used to replace qρ by -ε∇2ψ, which is equal to -
εd2ψ/dz2 because the function depends only on coordinate z.  The integral in Eq. (6) is 
thus 
 (-1)2 ε ∫ 0

Ds/2 (d2ψ/dz2) dz = +ε (dψ/dz)Ds/2,      (7) 
 
where we have used the condition (dψ/dz)o = 0 imposed by symmetry.  Combined, Eqs. 
(6) and (7) yield 
 (dψ/dz)Ds/2 = σs/ε,         (8) 
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which includes the correct signs.  Being equal to |(dψ/dz)Ds/2| from E = -∇ψ the 
magnitude of the electric field at the plate is |σs|/ε. 
 
 Armed with an expression for (dψ/dz)Ds/2, we can determine ψ(z) from the 
Poisson-Boltzmann equation which, in its one-dimensional form, reads 
 d2ψ/dz2 = - (qρo/ε) exp(-qψ/kBT).       (9) 
 
We replace ψ(z) by the dimensionless function 
 Ψ(z) = qψ(z) /kBT,         (10) 
 
so that Eq. (9) becomes 
 d2Ψ/dz2 = - (q 2ρo/ εkBT) exp(-Ψ) = - 2K 2 exp(-Ψ),    (11) 
 
where 
 K 2 = q 2ρo/ (2εkBT) = 2πlBρo,       (12) 
 
and where lB is the Bjerrum length q2 / 4πεkBT.  Eq. (11) has the solution 
 Ψ(z) = ln( cos2[Kz] ),        (13) 
 
as can be verified by first demonstrating 
 dΨ/dz = -2K tan(Kz),        (14) 
 
from which it follows that 
 d2Ψ/dz2 = -2K 2 / cos2(Kz).        (15) 
 
The boundary condition (dΨ /dz)Ds/2 = qσs/ εkBT from Eq. (8) fixes the value for K from 
Eq. (14): 
 -2K tan(KDs /2) = qσs/ εkBT.       (16) 
 
Note that 1/K has the units of [length].  The solution for Ψ(z) in Eq. (13) vanishes at z=0 
and becomes negative for |z| > 0, as expected for negatively charged plates. 
 
 Expressing Eq. (13) as exp[Ψ(z)] = cos2(Kz) permits the counterion density profile 
to be extracted easily from Eq. (4) of Lec. Mem 5, namely 
 ρ(z) = ρo / cos2(Kz) = ρo + ρotan2(Kz),      (17) 
 
where the second equality follows from the trigonometric identity 1 + tan2θ = 1/cos2θ.  
From Eq. (16), the value of tan2(KDs/2) at the plate is [qσs/(2εkBT)]2/K 2, which simplifies 
to just σs

2/(2ρoεkBT) when Eq. (12) is used for the definition of K 2.  Thus, the counterion 
density at the plate obeys the particularly simple expression 
 ρ(Ds/2) = ρo + σs

2/(2εkBT).        (18) 
 
In other words, the number density of counterions is lowest at z = 0, from which it rises 
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to ρ(Ds/2) at the plates.  From Eq. (18), the smallest value of ρ(Ds/2) is σs
2/(2εkBT) for a 

given charge density σs.  For instance, the magnitude of σs could be as large as 0.3 
C/m2 for one charge per lipid in a bilayer, yielding ρ(Ds/2) = 1.6 x 1028 m-3 = 26 M for 
water with ε = 80εo.  Eq. (18) demonstrates that the counterion density at the plates 
declines with increasing temperature, as entropy encourages the counterions to explore 
new territory away from the plate boundaries. 
 
 The pressure P between charged plates in the absence of salts has the 
appealing form (see Section 12.7 of Israelachvili, 1991) 
 P = ρokBT = 2εK 2(kBT/q)2,        (19) 
 
where the second equality follows from Eq. (12).  Except that ρo is the density of ions at 
the midplane, the first equality in this expression looks like the ideal gas law.  Under 
what conditions do the counterions fill the gap between the plates and physically behave 
like a gas?  The ions should spread away from the plates when the surface charge 
density is small, or the temperature is large.  In this limit, K is small according to the 
right-hand side of Eq. (16), which then can be solved to yield 
 K 2 = -qσs / εkBTDs.         (20) 
 
Using ρo= 2εkBTK 2/q2  from Eq. (12), this region of K corresponds to  
  ρo = -2σs / qDs,         (21) 
 
which is just the density expected if the counterions are spread evenly across the gap.  
The same expression for ρo applies at small gap width, where the product KDs in Eq. 
(16) is proportional to √Ds.  Under these conditions (large T; small σs or Ds), the system 
has the same pressure as an ideal gas of counterions 
 
 P = -2σskBT / qDs,   (22) 
 
which is inversely proportional to Ds.  As usual, σs and q have opposite signs, making  P 
> 0 and repulsive. 
 
 If the charges are more concentrated at the plates, Eq. (16) is easy enough to 
solve numerically.  At large separations, the electrostatic interaction is approximately 
 
 P = πkBT / 2lBDs

2,  (23) 
 
The figure on p. 2 shows a sample calculation for σs = -0.1 C/m2 in water.  The figure 
demonstrates that the repulsive electrostatic pressure without screening dominates the 
attractive van der Waals pressure for Ds ≥ 1 nm as it must: the electrostatic pressure 
decays like 1/Ds

2 while the van der Waals declines more rapidly as 1/Ds
3. 

 
Charged plates in an electrolye 

(electrostatics, ideal gas limit) 

(electrostatics, large Ds, no screening) 
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 The electrostatic pressure between two plates separated by an electrolyte 
solution may be considerably less than that predicted by Eq. (23).  The ion content of 
the medium for this case is: 
 

 
 
 
 
 
For negatively charged plates, the density of positively charged ions is elevated near the 
plates while the negatively charged ions are suppressed.  The presence of the bulk ions 
requires a modification of Eq. (19) for the electrostatic pressure between plates (Section 
12.17 of Israelachvili (1991).  For a monovalent electrolyte of positive and negative ions, 
the pressure is 
 P = 4ρskBT sinh2(Ψm/2).        (24) 
 
As expected, the pressure goes to zero as the potential vanishes.  If Ψm is small, and 
can be regarded as a sum of independent contributions from each plate, the pressure 
becomes 
 

P = (2σs
2/ε)•exp(-Ds/lD),         (25) 

 
after eliminating ρs.  We see from Eq. (25) that the presence of the electrolyte screens 
the interaction and suppresses the repulsive pressure: the power-law decay in Eqs. (22) 
and (23) becomes an exponential decay in an electrolyte, with a characteristic length 
scale lD, the Debye screening length. 
 
Combined interactions 
 
 Given the negative charge on phophatidylserine, the force between lipid bilayers 
may include both electrostatic and van der Waals components.  At short distances, the 
van der Waals contribution dominates because of its stronger power-law dependence 
on 1/Ds.  At longer distances, the electrostatic interaction dominates if the electrolyte is 
dilute, resulting in a large Debye length.  This is shown as the upper curve of the figure 
below.  However, in a concentrated electrolyte with a small Debye length, the 
electrostatic interaction is rapidly extinguished with increasing distance, opening up the 
possibility that the electrostatic interaction is important only at intermediate separation, 
as illustrated by the lower curve: 
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In this situation, there are two minima in the potential energy density: a global (primary) 
minimum at short distance and a local (secondary) minimum at intermediate distance.  
The combined electrostatic and van der Waals interaction, and its dependence on 
electrolyte concentration, forms the basis for the DLVO theory of colloids (Derjaguin and 
Landau, 1941; Verway and Overbeek, 1948).  If the temperature is low enough, a 
system may become trapped in the secondary minimum, the thermal fluctuations in its 
energy being insufficient to carry it into the global minimum on a reasonable time frame.  
Thus, individual colloidal particles may be stabilized in an electrolyte, rather than adhere 
to each other at close contact. 
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