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PHYS 4xx Mem 8 - Model for signal propagation 
 
(Note: the equation numbers start from the previous lecture) 
 
The propagation speed of a signal along an axon depends on both a time scale and a 
length scale.  We examine each of these quantities within the framework of electrical 
circuit theory from introductory physics courses.  Our first observation is that the plasma 
membrane may be regarded as a parallel plate capacitor with the charges Q on each 
side of the membrane supporting a potential difference V via 
 Q = CV,          (8) 
 
where C is the capacitance of the membrane.  Potentially, there are several 
contributions to the membrane capacitance; in the problem set, we examine an 
idealized membrane to show that the capacitance per unit area C is expected to be 
around 1 × 10-2 F/m2, which is in the range measured experimentally.  For a membrane 
potential of -70 mV, the capacitance per unit area C = 1 × 10-2 F/m2 corresponds to a 
charge density Q/A of 0.7 × 10-3 C/m2. 
 
 A single loop circuit with just a resistor and capacitor in series will discharge 
exponentially with time.  This can be seen by substituting Ohm's Law V = IR into Eq. (8) 
to obtain a differential equation for Q(t): 
 
 Q = -CRI = -CR(dQ/dt) 
or 

dQ/dt = -Q / RC,         (9) 
 
where the current I is dQ/dt and where the signs of I and V have been taken into 
account.  The solution to Eq. (9) is Q(t) = Qo exp(-t/τ), where the decay time τ is 
 τ = RC.          (10) 
 
Expressed in terms of conductivity and capacitance per unit area, Eq. (13.10) can be 
rewritten as  
 τ = C / γ.          (11) 
 
For example, the conductivity is about 5 Ω-1m-2 (or less) for the passage of individual 
ionic species across a membrane; see end-of-chapter problems.  Taking this value and 
C = 1 × 10-2 F/m2 leads to a decay time τ of 2 ms according to Eq. (11).  For future 
reference, we rearrange Eq. (9) in terms of the change in the membrane potential as  

dV / dt = -V / RC,         (12) 
 
where the decay time for V(t) from this expression is the same as that in Eq. (9). 
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Now make V a function of position as well as time, and consider the behavior of a small 
ring of membrane surface with area A = 2πr dx, where r is the radius of the axon and dx 
is a distance along its length, assumed to lie parallel to the x-axis. 
 
 
 
 
The flow of ions through this membrane patch can be viewed using the circuit diagram 
below for the three principal ions (Na+, K+ and Cl-).  Each ionic species is shown as 
having its own path within the circuit, as there is a separate Nernst potential (shown by 
the battery symbol) and conductivity (shown by the resistor symbol) for each ionic 
species.  The capacitance doesn't depend on the individual species, so only one 
capacitive element is required for this section of the axon.  The horizontal wire at the top 
of the circuit represents the current outside of the axon while the wire at the bottom 
represents the current in the interior of the axon. 
 

 
 
 
 
 
 
 
The circuit element can be simplified by combining individual Nernst/resistive elements: 
•the conductance for the overall current is just the sum of the individual conductances, 
so only one resistive element is required, with conductivity γ = γNa + γK + γCl, 
•the Nernst potentials for each ion can be replaced with the quasi-steady state potential 
Vqss defined in Eq. (7). 
The effective circuit is the magenta box: 
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Now add the resistance of the axonal fluid dRax; a similar resistance should appear in 
the top wire of the diagram representing current flow outside of the axon, but because 
the exterior fluid region is so large, this resistance can be neglected. 
 
When the current Iax flows to the right along the bottom wire and encounters the loop 
circuit at location x linking the interior of the axon to the exterior, it divides such that its 
value after the loop Iax(x + dx) is less than its value before, Iax(x).  The difference in these 
values, 

Irad = Iax(x) - Iax(x + dx),        (13) 
 
is the amount of current lost to the loop.   
 
Irad can either leak through the membrane via Vqss and Rrad or it can add to the charge on 
the membrane at the capacitive element CA.  The current that leaks out is equal to the 
radial current density Irad(x) multiplied by the area of the membrane at location x, namely 
2πr dx.  The charge dQ that accumulates at the capacitor is just dQ = CAdV, which 
arises from the current dQ / dt  = d/dt (CAV) in time interval dt.  Thus, 
 Irad(x) = Irad(x) • 2πr dx + d/dt (CAV).      (14) 
 
Here, CA is equal to the product of the capacitance per unit area C multiplied by the area 
element 2πr dx; hence, 
 Irad(x) = 2πr {Irad(x) + C (dV /dt)} dx.      (15) 
 
Substituting Eq. (15) into Eq. (13) yields 
 Iax(x) - Iax(x + dx) = 2πr {Irad(x) + C (dV /dt)} dx,     (16) 
or 

dIax / dx = -2πr {Irad(x) + C (dV /dt)}.      (17) 
 
The minus sign comes from the reversed order of the currents on the left-hand side of 
Eq. (16) compared to the conventional definition of a derivative df/dx. 
 
The axial current can be related to the decrease in potential from x to x + dx through 
Ohm's law: 
 V(x + dx) - V(x) = -Iax(x) dRax(x),       (18) 
 
where dRax(x) is the resistance of the interior of the axon over a distance dx.  The minus 
sign arises because current flows in the direction of decreasing potential; here, a 
positive value for dV/dx means that the potential increases with x, which drives the 
current toward negative x, the opposite direction than what is assumed in the circuit 
diagram.  The resistance dRax of the axon segment is equal to the length of the segment 
dx divided by the product of its cross sectional area πr2 and the axial conductivity κax (in 
three dimensions; units of Ω-1m-1)  
 dRax =  dx / πr2κax.         (19) 
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Thus, Eq. (18) becomes 
 Iax(x) = -(πr2κax) • (dV(x) / dx).        (20) 
and 
 dIax/dx = -(πr2κax) • (d2V(x) / d2x) 
  
Eqs. (17) and (20) can be combined to yield a differential equation for the voltage V(x,t).  
The first step is to take the spatial derivative of Eq. (20) to obtain dIax/dx, and then 
substitute the result into Eq. (17).  After some algebraic manipulations, 
 (rκax/2) • (d2V(x) / dx2) = Irad(x) + C (dV /dt).     (21) 
 
This is one version of the cable equation.  The next step is to relate the radial current 
density Irad(x) to the potential.  To obtain Eq. (7) for the quasi-steady state potential Vqss, 
we imposed the condition that there was no net current density out of the three parallel 
circuits for each ionic species.  However, if the applied potential V varies from Vqss, then 
there will be a current density I governed by Ohm's law I = γ ΔV, where the relevant ΔV 
is V(x,t) - Vqss and the relevant (two-dimensional conductivity) γ is γtot because the 
current is the sum over all ionic contributions: 

γtot = Σα γα.          (22) 
 
That is, the radial current per unit area is 

Irad(x) = γtot (V - Vqss).        (23) 
 
Placing this into Eq. (21) yields 
 (rκax/2) • (d2V / dx2) = γtot (V - Vqss) + C (dV /dt).     (24) 
 
As a last step, we shift the voltages by defining the local voltage as v(x,t) as 
 v(x,t) = V(x,t) - Vqss,         (25) 
 
to extract the linear cable equation: 
 λ2 (d2v / dx2) - τ (dv /dt) = v.   (26) 
 
By comparison with Eq. (24) the length and time scales are 
 λ = (rκax / 2γtot)1/2   τ = C/γtot.     (27) 
 
The time scale τ has appeared before in Eq. (11) for RC circuits. 
 
If the initial disturbance applied to the axon is small (i.e., V - Vqss is small) then the linear 
cable equation is not far from Fick's law and the disturbance should spread out with time 
but will not propagate intact.  The predicted time scale for the disturbance to dissipate is 
around a millisecond. 
 

linear cable equation 
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To make the cable equation a proper description of signal propagation, the two-
dimensional conductivities γα in Eq. (22) must be modified to reflect the experimental 
observation that sodium channels open as the action potential rises at its leading edge.  
When channels open in the membrane, the conductivity increases in proportion to the 
number of open channels per unit area, nopen, as in 
 γα(V) = nopenGchannel + γα(0)        (28) 
 
where Gchannel is the conductance of a single channel and where γα(V) is the conductivity 
of species α at voltage V.  Given that more channels open as the voltage increases, 
then γtot is voltage-dependent.  Considering only the sodium and potassium 
conductivities, Eq. (24) can be rearranged to read 
 (rκax/2γK)•(d2V / dx2) - (C/γK)•(dV /dt) = (γNa/γK) (V - VNa) + (V - VK).  (29) 
 
For a squid axon under resting conditions are γNa = 0.11 Ω-1m-2, γK = 3.7 Ω-1m-2, and γCl = 
3.0 Ω-1m-2.  For the two-species (Na and K) system here, γtot ≅ γK and the two prefactors 
in Eq. (13.29) are approximately equal to λ2 and τ in Eq. (26) 
 λ ≅ (rκax / 2γK)1/2   τ ≅ C/γK,     (30) 
 
so long as the number of open sodium channels is small.  Hence, the left-hand sides of 
Eqs. (26) and (29) are very similar, while the right-hand side of Eq. (29) reveals the 
presence of the voltage-dependent sodium conductivity γNa(V).  Note that λ is 
proportional to the square root of the axon radius. 
 
Taking the potassium conductivity to be constant at the leading edge of the action 
potential, the γNa:γK ratio changes from 1:25 in the resting state to 20:1 at the peak of the 
potential.  This dramatic variation is sufficient to completely change the behavior of Eq. 
(29) from signal dissipation below the threshold voltage to signal propagation above it. 
 
The speed of the propagating signal is proportional to λ/τ, the length and time scales of 
the equation.  We have already estimated τ to be about 1 - 2 milliseconds.  To estimate 
λ, we take the (three dimensional) conductivity of the axonal fluid to be κax = 1 Ω-1m-1; 
seawater has κ = 5 Ω-1m-1.  Taking r = 10 µm for the axon radius and γ = 5 Ω-1m-2 yields 
λ = 10-3 m.  Thus, the propagation speed of the action potential with these parameter 
values should be about 0.5 - 1 m/s within the cable equation approach. 
 


