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PHYS 4xx net1 - Soft networks and their deformation 
 
Examples of two-dimensional networks in the cell: 
 
(i) membrane-associated cytoskeleton of the human erythrocyte 

spectrin

ankyrin

junction

complex

 
(from Byers and Branton, 1985) 

 
• a network of spectrin tetramers attached to cytoplasmic side of plasma membrane 

about midway along their length by the protein ankyrin 
• each spectrin tetramer has a 200 nm contour length, but <ree> ~ 70 nm in vivo 
 
(ii) auditory outer hair cell 

             
(from Tolomeo, Steele, and Holley, 1996; bar is 200 nm long) 

 
• lateral cortex lies on cytoplasmic side of the plasma membrane 
• principal filaments are about 5-7 nm thick, spaced ~ 60 nm apart and form hoops 

around the axis of the cylinder; probably actin 
• cross-linkers at intervals of ~30 nm (with a range of 10-50 nm) by thinner filaments 

just 2-3 nm thick, denoted by "cl" above; probably spectrin 
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(iii) nuclear lamina 
 

outer nuclear membrane

inner nuclear
membrane

pore

nuclear lamina

nuclear lumen
   containing DNA

 
(electron micrograph of a region about 2.5 µm in length from the nuclear lamina in a 

Xenopus ooctyte; from Aebi et al., 1986) 
 
• four-fold connectivity; network is 10-20 nm thick 
• filaments of the protein laminin are 10.5 ± 1.5 nm in diameter and are typically 

separated by about 50 nm 
 
 
(iv) peptidoglycan 

 
 
 
 
 
 

 
 
face view  side view along glycan 

(after Koch and Woeste, 1992) 
 
• bacterial cell wall is made from peptidoglycan network 
• stiff chains of sugar molecules (cylinders) are cross-linked both in- and out-of-plane 

by flexible chains of amino acids (out-of-plane links are indicated by arrows) 
 
 
Strain tensor 
 
To describe the deformation of an object, we introduce a set of vectors u, such that a 
point moves from its original position x to a new position x + u. 

 
 
 

sugar rings 

(b) (a) 

peptides 1.3 nm 

2 nm 
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• u varies in magnitude and direction across the object  (u = constant corresponds to 

translation) 
• u may have non-zero partial derivatives in any Cartesian direction 
• the strain tensor uij, is related to the rate of change of u with position x by 
 uij = 1/2 [∂ui/∂xj + ∂uj/∂xi + Σk (∂uk/∂xi)(∂uk/∂xj)], (i,j,k are Cartesian indices)    (1) 
 
• uij has 22 = 4 components in 2D and 32 = 9 components in 3D 
• •uij is unitless and is symmetric in indices i and j.   
 
For small deformations, the last term in Eq. (1) may be neglected: 
 uij ≅ 1/2 [∂ui/∂xj + ∂uj/∂xi].  (small deformations)   (2) 
 
Example:  Uniform scaling as in the diagram above: 
 all x go to 1.1x   ---->  uxx = (1.1 - 1)x / x = 0.1 everywhere 
 all y go to 0.9y   ---->  uyy = (0.9 - 1)y / y = -0.1 everywhere 
 change in x does not depend on y ----> uxy = uyx = 0. 
 
Sress tensor 
 
• stress tensor σij = force per unit area, taking into account the direction of force F 

 
 
 
 
 

 
• component in the i-direction of the net force, Fi, is given by 
 Fi = Σj σij aj.          (3) 
 
• surface area vector a is perpendicular to the surface 
• σij has units of energy density and is symmetric in indices i and j. 
• generally, the diagonal elements of the stress tensor correspond to compression and 

the off-diagonal elements to shear. 

u 
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Example:  An object under hydrostatic pressure P. 
 
• F on a surface is in the opposite direction to the vector a describing the surface 
 Fi = -P ai = -P Σj δij aj.        (4) 
• comparing Eqs. (3) and (4): 
 σij = -P δij.          (5) 
 
Elastic moduli 
 
• for ideal springs in one dimension, the restoring force f is proportional to the 

displacement from equilibrium x: f = -kspx, where ksp = spring constant. 
• corresponding relationship for continuous materials reads [stress] ∝ [strain], or 
 σij = Σk,l Cijklukl         (6) 
 
• material-specific constants Cijkl are the elastic stiffness constants or elastic moduli; 

units of energy per unit volume for 3D materials, or energy per unit area for 2D 
 
• the elastic moduli of two- or three-dimensional materials form a tensor, as opposed 

to the single ksp of an isolated spring   
 
Just as the potential energy of a Hooke's law spring is quadratic in the square of the 
displacement, the change in the free energy density ΔF of a continuous object under 
deformation is quadratic in the strain tensor uij: 
 ΔF = 1/2 Σi,j,k,l Cijkluijukl.        (7) 
 
• symmetry considerations greatly reduce the number of independent components of 

Cijkl from 34 = 81 terms in three dimensions, or 24 = 16 in two dimensions. 
 


