PHYS 4xx Net 1

PHYS 4xx net1 - Soft networks and their deformation

Examples of two-dimensional networks in the cell:

(i) membrane-associated cytoskeleton of the human erythrocyte

(from Byers and Branton, 1985)

- a network of spectrin tetramers attached to cytoplasmic side of plasma membrane about midway along their length by the protein ankyrin
- each spectrin tetramer has a 200 nm contour length, but $\langle r_{ee} \rangle \sim 70$ nm in vivo
- (ii) auditory outer hair cell

(from Tolomeo, Steele, and Holley, 1996; bar is 200 nm long)

- lateral cortex lies on cytoplasmic side of the plasma membrane
- principal filaments are about 5-7 nm thick, spaced ~ 60 nm apart and form hoops around the axis of the cylinder; probably actin
- cross-linkers at intervals of ~30 nm (with a range of 10-50 nm) by thinner filaments just 2-3 nm thick, denoted by "cl" above; probably spectrin

PHYS 4xx Net 1

(iii) nuclear lamina

(electron micrograph of a region about 2.5 μm in length from the nuclear lamina in a *Xenopus* ooctyte; from Aebi *et al.*, 1986)

- four-fold connectivity; network is 10-20 nm thick
- filaments of the protein laminin are 10.5 ± 1.5 nm in diameter and are typically separated by about 50 nm

(iv) peptidoglycan

- bacterial cell wall is made from peptidoglycan network
- stiff chains of sugar molecules (cylinders) are cross-linked both in- and out-of-plane by flexible chains of amino acids (out-of-plane links are indicated by arrows)

Strain tensor

To describe the deformation of an object, we introduce a set of vectors \mathbf{u} , such that a point moves from its original position \mathbf{x} to a new position $\mathbf{x} + \mathbf{u}$.

PHYS 4xx Net 1

- \mathbf{u} varies in magnitude and direction across the object (\mathbf{u} = constant corresponds to translation)
- **u** may have non-zero partial derivatives in any Cartesian direction
- the strain tensor u_{ij} , is related to the rate of change of **u** with position **x** by $u_{ij} = 1/2 \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_i}{\partial x_i} + \sum_k \left(\frac{\partial u_k}{\partial x_i} \right) \left(\frac{\partial u_k}{\partial x_j} \right) \right], (i,j,k)$ are Cartesian indices) (1)
- u_{ij} has $2^2 = 4$ components in 2D and $3^2 = 9$ components in 3D
- u_{ii} is unitless and is symmetric in indices *i* and *j*.

For small deformations, the last term in Eq. (1) may be neglected:
$$u_{ij} \cong 1/2 \left[\partial u_i / \partial x_i + \partial u_i / \partial x_i \right].$$
 (small deformations) (2)

Example: Uniform scaling as in the diagram above:

all
$$x$$
 go to 1.1 x ----> $u_{xx} = (1.1 - 1)x/x = 0.1$ everywhere all y go to 0.9 y ----> $u_{yy} = (0.9 - 1)y/y = -0.1$ everywhere change in x does not depend on y ----> $u_{xy} = u_{yx} = 0$.

Sress tensor

• stress tensor σ_{ij} = force per unit area, taking into account the direction of force ${f F}$

• component in the $\dot{\textbf{F}}$ direction of the net force, \textbf{F}_{i} , is given by

$$F_{i} = \Sigma_{j} \ \sigma_{ij} \ a_{j}. \tag{3}$$

- surface area vector a is perpendicular to the surface
- σ_{ij} has units of energy density and is symmetric in indices *i* and *j*.
- generally, the diagonal elements of the stress tensor correspond to compression and the off-diagonal elements to shear.

PHYS 4xx Net 1 4

Example: An object under hydrostatic pressure *P*.

• F on a surface is in the opposite direction to the vector a describing the surface

$$F_{i} = -P a_{i} = -P \sum_{i} \delta_{ii} a_{i}. \tag{4}$$

• comparing Eqs. (3) and (4):

$$\sigma_{ij} = -P \,\delta_{ij}. \tag{5}$$

Elastic moduli

- for ideal springs in one dimension, the restoring force f is proportional to the displacement from equilibrium x: $f = -k_{sp}x$, where k_{sp} = spring constant.
- corresponding relationship for continuous materials reads [stress] \propto [strain], or $\sigma_{ij} = \Sigma_{k,l} C_{ijkl} u_{kl}$ (6)
- material-specific constants C_{ijkl} are the elastic stiffness constants or elastic moduli; units of energy per unit volume for 3D materials, or energy per unit area for 2D
- the elastic moduli of two- or three-dimensional materials form a tensor, as opposed to the single $k_{\rm sp}$ of an isolated spring

Just as the potential energy of a Hooke's law spring is quadratic in the square of the displacement, the change in the free energy density $\Delta \mathcal{F}$ of a continuous object under deformation is quadratic in the strain tensor u_{ii} :

$$\Delta \mathcal{F} = 1/2 \sum_{i,j,k,l} C_{ijkl} u_{ij} u_{kl}. \tag{7}$$

• symmetry considerations greatly reduce the number of independent components of C_{ijkl} from $3^4 = 81$ terms in three dimensions, or $2^4 = 16$ in two dimensions.