PHYS 4xx Net 3 - Properties of two-dimensional networks

Six-fold spring networks under stress
When the network is placed under a two-dimensional tension τ, s changes from its unstressed value s_{0} to a new value s_{τ}. We evaluate this behavior for a spring network.

- calculate s_{τ} by minimizing the enthalpy H

$$
\begin{equation*}
H=E-\tau A \tag{1}
\end{equation*}
$$

- at 3 springs per vertex, the energy per vertex is $(3 / 2) k_{\mathrm{sp}}\left(s-s_{0}\right)^{2}$
- the area per vertex is

$$
\begin{equation*}
A_{v}=\sqrt{ } 3 s^{2} / 2 \tag{2}
\end{equation*}
$$

- hence, the enthalpy per vertex H_{v} is

$$
\begin{equation*}
H_{\mathrm{v}}=(3 / 2) k_{\mathrm{sp}}\left(s-s_{\mathrm{o}}\right)^{2}-\sqrt{ } 3 \tau s^{2} / 2 \tag{3}
\end{equation*}
$$

- take the derivative of H_{v} to find $s_{\mathrm{\tau}}$:

$$
\begin{aligned}
0=\partial H_{v} / \partial s= & \partial / \partial s\left[(3 / 2) k_{\mathrm{sp}}\left(s-s_{0}\right)^{2}-\sqrt{ } 3 \tau s^{2} / 2\right] \\
& =(3 / 2) \cdot 2 \cdot k_{\mathrm{sp}}\left(s-s_{0}\right)-\sqrt{ } 3 \cdot 2 \tau s / 2 \\
& =\sqrt{ } 3 \cdot\left[\sqrt{ } 3 k_{\mathrm{sp}}\left(s-s_{0}\right)-\tau s\right]
\end{aligned}
$$

then

$$
\left[\sqrt{ } 3 k_{\mathrm{sp}}-\tau\right] s=\sqrt{ } 3 k_{\mathrm{sp}} s_{0}
$$

$$
s=\sqrt{ } 3 k_{\mathrm{sp}} s_{0} /\left[\sqrt{ } 3 k_{\mathrm{sp}}-\tau\right]
$$

or

$$
\begin{equation*}
s_{\tau}=s_{0} /\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right) \quad \text { (six-fold symmetry) } \tag{4}
\end{equation*}
$$

- (4) shows that the network expands without bound as the tension approaches a critical value $\tau_{\text {exp }}$,

$$
\begin{equation*}
\tau_{\mathrm{exp}}=\sqrt{3} k_{\mathrm{sp}} \quad \text { (six-fold symmetry) } \tag{5}
\end{equation*}
$$

- expansion at large tension because both the energy of the springs and the pressure term τA_{v} scale like s^{2} at large extensions; of course, physical networks could reach a maximum bond length
- the minimum value of the enthalpy per vertex is

$$
\begin{aligned}
H_{v, \text { min }} & =(3 / 2) k_{\mathrm{sp}}\left(s_{\tau}-s_{0}\right)^{2}-\sqrt{ } 3 \tau s_{\tau}^{2} / 2 \\
& =(3 / 2) k_{\mathrm{sp}} s_{0}^{2}\left[1 /\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)-1\right]^{2}-\sqrt{ } 3 \tau s_{0}^{2} / 2\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{2} \\
& =\left\{(3 / 2) k_{\mathrm{sp}} s_{0}^{2}\left[\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]^{2}-\sqrt{ } 3 \tau s_{0}^{2} / 2\right\} /\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{2}\right. \\
& =s_{0}^{2}\left\{k_{\mathrm{sp}}\left[\tau / k_{\mathrm{sp}}\right]^{2}-\sqrt{ } 3 \tau\right\} / 2\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{2} \\
& =\tau s_{0}^{2}\left\{\tau / k_{\mathrm{sp}}-\sqrt{ } 3\right\} / 2\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{2} \\
& =\sqrt{ } 3 \tau s_{0}^{2}\left\{\left(\tau / \sqrt{ } 3 k_{\mathrm{sp}}\right)-1\right\} / 2\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{2}
\end{aligned}
$$

or

$$
\begin{equation*}
H_{\mathrm{v}, \text { min }}=-(\sqrt{3} / 2) \tau s_{\mathrm{o}}^{2} /\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right) \quad \text { (equilateral plaquettes) } \tag{6}
\end{equation*}
$$

- Eq. (6) is not the global minimum of H under compression $(\tau<0)$ if shapes other than equilateral plaquettes are considered
- the smallest τA contribution at $\tau<0$ is given by plaquettes with zero area
- isosceles triangles with two short sides of length s_{\mid}and a long side of length $2 s_{\text {I }}$

have the lowest spring energy at zero area (3 springs per vertex):

$$
H_{\mathrm{v}, \text { iso }}=\left(k_{\mathrm{sp}} / 2\right) \cdot\left[\left(2 s_{\mathrm{l}}-s_{0}\right)^{2}+2\left(s_{\mathrm{l}}-s_{0}\right)^{2}\right]
$$

- minimum value of $H_{v, \text { iso }}$ as a function of s_{\mid}is at $\partial H_{v, \text { iso }} / \partial s_{\mid}=0$, or

$$
\begin{aligned}
& 0=\partial / \partial s_{I}\left[\left(2 s_{I}-s_{0}\right)^{2}+2\left(s_{I}-s_{0}\right)^{2}\right] \\
&=2 \cdot 2 \cdot\left(2 s_{\mid}-s_{0}\right)+2 \cdot 2 \cdot\left(s_{\mid}-s_{0}\right) \\
&=8 s_{\mid}-4 s_{0}+4 s_{\mid}-4 s_{0}=12 s_{\mid}-8 s_{0}
\end{aligned}
$$

Hence

$$
s_{I}=2 s_{0} / 3
$$

- Thus

$$
\begin{align*}
H_{\mathrm{v}, \text { iso }}= & \left(k_{\mathrm{sp}} / 2\right) \cdot\left[\left(4 s_{0} / 3-s_{0}\right)^{2}+2\left(2 s_{0} / 3-s_{0}\right)^{2}\right]=k_{\mathrm{sp}} s_{0}^{2} / 2\left[(1 / 3)^{2}+2(1 / 3)^{2}\right] \\
& =k_{\mathrm{sp}} s_{0}^{2} / 6 \tag{7}
\end{align*}
$$

Thus, the enthalpy per vertex of the equilateral network rises with pressure ($\tau<0$) according to Eq. (6) until it exceeds Eq. (7) at a collapse tension $\tau_{\text {coll }}$

$$
H_{v, \text { min }}=k_{\mathrm{sp}} s_{0}^{2} / 6
$$

that is

$$
\begin{aligned}
& -(\sqrt{ } 3 / 2) \tau s_{0}^{2} /\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)=k_{\mathrm{sp}} s_{\mathrm{o}}{ }^{2} / 6 \\
& -(\sqrt{ } 3 / 2) \tau=\left(k_{\mathrm{sp}} / 6\right) \cdot\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right) \\
& -\tau=\left(k_{\mathrm{sp}} / 3 \sqrt{ } 3\right) \cdot\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right) \\
& -\tau=k_{\mathrm{sp}} / 3 \sqrt{ } 3-\tau / 9 \\
& -(8 / 9) \tau=k_{\mathrm{sp}} / 3 \sqrt{ } 3
\end{aligned}
$$

or

$$
\begin{equation*}
\tau_{\mathrm{coll}}=-(\sqrt{3} / 8) k_{\mathrm{sp}} \quad \text { (six-fold symmetry) } \tag{8}
\end{equation*}
$$

or, equivalently, at an equilateral spring length $s_{\tau} / s_{0}=8 / 9$.

Elastic moduli for networks under stress

Elastic moduli can be obtained by the same method as in Net 2 for springs at zero temperature and no stress. For variety, we take a different approach for the compression modulus, going back to its definition

$$
\begin{aligned}
K_{\mathrm{A}}^{-1}= & A^{-1} \partial A / \partial \tau=\left(1 / s_{\tau}^{2}\right) \partial s_{\tau}^{2} / \partial \tau=\left(2 / s_{\tau}\right) \partial s_{\tau} / \partial \tau \\
& =\left(2 / s_{\tau}\right) \partial / \partial \tau\left\{s_{o} /\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)\right\} \\
& =\left(2 s_{0} / s_{\tau}\right)(-1)\left(-1 / \sqrt{ } 3 k_{\mathrm{sp}}\right)\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{-2} \\
& =\left(2 / \sqrt{ } 3 k_{\mathrm{sp}}\right)\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right)^{-1}
\end{aligned}
$$

thus

$$
\begin{equation*}
K_{\mathrm{A}}=\left(\sqrt{ } 3 k_{\mathrm{sp}} / 2\right) \cdot\left(1-\tau /\left[\sqrt{ } 3 k_{\mathrm{sp}}\right]\right) \tag{9}
\end{equation*}
$$

(this returns our previous expression when $\tau=0$)

The shear modulus can be obtained following the same route as before

$$
\begin{equation*}
\mu=\left(\sqrt{3} k_{\mathrm{sp}} / 4\right) \cdot\left(1+\sqrt{ } 3 \tau / k_{\mathrm{sp}}\right), \tag{10}
\end{equation*}
$$

- the Poisson ratio is a measure of how a material contracts in a transverse direction when stretched longitudinally; in two dimensions (stress along the x-axis) $\sigma_{\mathrm{p}}=-u_{\mathrm{yy}} / u_{\mathrm{xx}}$,
- (the negative sign gives $\sigma_{\mathrm{p}}>0$ for conventional materials)
- we can show, from the 3D result in Appendix D , that in 2D:

$$
\begin{equation*}
\sigma_{\mathrm{p}}=\left(K_{\mathrm{A}}-\mu\right) /\left(K_{\mathrm{A}}+\mu\right) \tag{12}
\end{equation*}
$$

- a triangular network at zero temperature and stress has $K_{\mathrm{A}} / \mu=2-->\sigma_{\mathrm{p}}=1 / 3$
- (9) and (10) give

$$
\begin{equation*}
\sigma_{\mathrm{p}}=\left[1-5 \tau /\left(\sqrt{ } 3 k_{\mathrm{sp}}\right)\right] /\left[3+\tau /\left(\sqrt{ } 3 k_{\mathrm{sp}}\right)\right] \quad \text { (six-fold symmetry). } \tag{13}
\end{equation*}
$$

- thus, σ_{p} becomes negative over the range $\sqrt{3} / 5<\tau / k_{\mathrm{sp}}<\sqrt{3}$

