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PHYS 4xx Net 3 - Properties of two-dimensional networks 
 
Six-fold spring networks under stress 
 
When the network is placed under a two-dimensional tension τ, s changes from its 
unstressed value so to a new value sτ.  We evaluate this behavior for a spring network. 
 

 
 
 
 

 
• calculate sτ by minimizing the enthalpy H 
 H = E - τA          (1) 
 
• at 3 springs per vertex, the energy per vertex is (3/2)ksp(s - so)2  
 
• the area per vertex is 
 AV = √3 s2/2          (2) 
 
• hence, the enthalpy per vertex HV is 
 HV = (3/2)ksp(s - so)2 - √3 τs2/2       (3) 
 
• take the derivative of HV to find sτ: 
 0 = ∂HV /∂s = ∂/∂s [(3/2)ksp(s - so)2 - √3 τs2/2] 
   = (3/2)•2•ksp(s - so) -  √3 • 2τs/2 
   = √3 • [√3 ksp(s - so) - τs] 

then 
 [√3 ksp - τ ]s = √3 kspso 
 s = √3 kspso / [√3 ksp - τ ] 

or 
 sτ = so / (1 - τ  / [√3 ksp] )  (six-fold symmetry)    (4) 
 
• (4) shows that the network expands without bound as the tension approaches a 

critical value τexp, 
 τexp = √3 ksp    (six-fold symmetry),    (5) 
 

 
 
 
 
 
 

so 
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• expansion at large tension because both the energy of the springs and the pressure 

term τAV scale like s2 at large extensions; of course, physical networks could reach a 
maximum bond length 

 
• the minimum value of the enthalpy per vertex is 
 Hv,min = (3/2)ksp(sτ - so)2 - √3 τsτ2/2 
  = (3/2)kspso

2 [1/(1 - τ  / [√3 ksp] ) - 1]2 - √3 τso
2 / 2(1 - τ  / [√3 ksp] )2 

  = { (3/2)kspso
2 [τ  / [√3 ksp]2 - √3 τso

2 /2} /(1 - τ  / [√3 ksp] )2 
  = so

2{ksp [τ  / ksp]2 - √3 τ} / 2(1 - τ  / [√3 ksp] )2 
  = τso

2{τ / ksp - √3 } / 2(1 - τ  / [√3 ksp] )2 
  = √3 τso

2{ (τ /√3 ksp) -  1} / 2(1 - τ  / [√3 ksp] )2 
or 
 Hv,min = - (√3 / 2)τso

2 / (1 - τ  / [√3 ksp] )     (equilateral plaquettes)        (6) 
 
• Eq. (6) is not the global minimum of H under compression (τ < 0) if shapes other 

than equilateral plaquettes are considered 
 
• the smallest τA contribution at τ < 0 is given by plaquettes with zero area 
 
• isosceles triangles with two short sides of length sI and a long side of length 2sI 

sI sI

2sI  
have the lowest spring energy at zero area (3 springs per vertex): 

 Hv, iso = (ksp/2)• [(2sI - so)2 + 2(sI - so)2 ] 
 
• minimum value of Hv, iso as a function of sI is at ∂Hv,iso /∂sI = 0, or 
 0 = ∂/∂sI [(2sI - so)2 + 2(sI - so)2 ] 
  = 2•2•(2sI - so) + 2•2•(sI - so) 
  = 8sI - 4so +  4sI - 4so  = 12sI - 8so 

Hence 
 sI = 2so/3 
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• Thus 
 Hv, iso = (ksp/2)• [(4so/3- so)2 + 2(2so/3 - so)2 ] = kspso

2/2 [ (1/3)2 + 2(1/3)2 ] 
  = kspso

2/6         (7) 
 
Thus, the enthalpy per vertex of the equilateral network rises with pressure (τ < 0) 
according to Eq. (6) until it exceeds Eq. (7) at a collapse tension τcoll 
 
 HV,min = kspso

2/6 
that is 
  - (√3 / 2)τso

2 / (1 - τ  / [√3 ksp] ) = kspso
2/6 

 - (√3 / 2)τ = (ksp/6)•(1 - τ  / [√3 ksp] ) 
 - τ = (ksp/3√3)•(1 - τ  / [√3 ksp] ) 
 - τ = ksp/3√3 - τ  /9 
 - (8/9)τ = ksp/3√3 
or 
 τcoll = - (√3 /8) ksp  (six-fold symmetry),     (8) 
 
or, equivalently, at an equilateral spring length sτ/so = 8/9. 
 
 
Elastic moduli for networks under stress 
 
Elastic moduli can be obtained by the same method as in Net 2 for springs at zero 
temperature and no stress.  For variety, we take a different approach for the 
compression modulus, going back to its definition 
 
 KA

-1 = A-1 ∂A /∂τ = (1/sτ2) ∂sτ2 /∂τ  = (2/sτ) ∂sτ /∂τ   
  = (2/sτ) ∂/∂τ {so / (1 - τ  / [√3 ksp] )} 
  = (2so/sτ) (-1)(-1/√3 ksp)(1 - τ  / [√3 ksp] )-2 
  = (2/√3 ksp)(1 - τ  / [√3 ksp] )-1 

thus 
 KA = (√3 ksp/2)•(1 - τ  / [√3 ksp] )       (9) 

(this returns our previous expression when τ = 0) 
 

 
 
 
 
 
 
 
The shear modulus can be obtained following the same route as before 
 

sτ + δ 

so 

so 

δ 

sτ 
sτ 
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 µ = (√3 ksp /4)•(1 + √3 τ /ksp),       (10) 
 
• the Poisson ratio is a measure of how a material contracts in a transverse direction 

when stretched longitudinally; in two dimensions (stress along the x-axis) 
 σp = - uyy / uxx,         (11) 
 
• (the negative sign gives σp > 0 for conventional materials) 
 
• we can show, from the 3D result in Appendix D, that in 2D: 
 σp = (KA - µ) / (KA + µ).        (12) 
 
• a triangular network at zero temperature and stress has KA / µ = 2 ---> σp = 1/3 
 
• (9) and (10) give 
 σp = [1 - 5τ / (√3 ksp)] / [3 + τ / (√3 ksp)]  (six-fold symmetry).      (13) 
 
• thus, σp becomes negative over the range √3 / 5 < τ /ksp < √3 
 


